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1. Introduction

This report describes the mathematical analysis on

which the program modifications to Fotonap are based. Also

included in the report is some program documentation and a

description of the final test runs used in the program check

out. The program modifications may be subdivided into 7 separate

groups, 6 of which are mathematical in nature and therefore

described here. To deal with the added capabilities, the set

of control cards used to run Fotonap has been augmented. A new

Fotonap user's guide has been issued as a separate document.

Program changes based on the analysis given in this report have

been implemented and checked out on both the CDC 6400 and the

Univac 1108 versions of Fotonap.

The most fundamental change to Fotonap is the inclusion

of a Kalman filter and a fixed lag smoother. The smoother

formulation is considerably more complicated than that of the

filter. This applies both to the mathematical analysis and to

the program. The core storage requirements are also much higher.

Tie analysis is based on Gelb (1977), though checking back to

the original source (Meditch, 1969) one of the required equations

was found to be in error. The formulation implemented in Fotonap,

however, differs slightly from that given by Meditch (1969).

The Fotonap formulation, though mathematically equivalent,

requires slightly less core storage. The filter and smoother

analysis is given in Section 2. The description of the satellite

-1-



drag coefficient and the GPS user clock as random variables is

based on some equations given by Dr. Ballew (1977) of DMA Aero-

space Center, St. Louis. This is given in Sections 3 and 4.

Formulae for calculating the state transition matrices

(required by the filter/smoother) from those computed by the

regular Fotonap integrator are given in Section 5.

A brief description of the Global Positioning System

(GPS) is given in Section 6. A derivation of all the equations

required for handling GPS measurements is also contained within

this section. A considerable amount of effort was spent on

developing an efficient scheme for selecting GPS satellites when

running the program in a simulation mode. It had originally been

Ehought possible to use the Morduch (1976) method, but that was

developed for somewhat different requirements. The rather lengthy

analysis is given in Appendix E.

Section 7 gives the mathematical analysis for drag

segmentation, which is a scheme whereby the satellite drag

coefficient changes discretely at fixed (by the program user)

intervals of time. A novel (optional) feature of the implemented

scheme is that the coefficients may be mutually constrained, the

strength of the constraints being determined by the program user.

(Very strong constraints effectively eliminate the distinction

between the segments. This feature was utilized in the program

check-out.)

A new atmospheric model, the Lockheed-Jacchia Atmosphere

has been added to Fotonap. The program is a modification of one

supplied by Mr. George Stentz (1978) of DMA Aerospace Center. A

-2-



description of the formulae used is given in Section 8. Section

9 of the report gives a general description of all program changes.

The changes'to the Fotonap user's guide are indicated in Section

10. Section 11, the last section of the main text, describes

some of the test runs made in checking out the new version of

Fotonap.

A set of 7 appendices are also included in the report.

The first 5 (A through E) give detailed derivations of some of

the formulae used in the main text. Appendices F and G updates

some of the previous program documentation (Hartwell, 1975)

relating to Fotonap.

Fotonap is sometimes spelled Photonap in this report.

It is the same program.
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2. Mathematical Analysis For Fixed Lag Smoother

2.1 Definition of Terms

E Operator denoting 'Expected value of'

A-' Inverse of matrix A

A T Transpose of matrix Aj

A (p,- )T .(A)-'1

Coy y Covariance of y

Coy y =E(y.-Ey)(y-Ey)T

x(k,n) Estimiate of parameter vector at time-point
k after processing measurements at time-
points 1 through n.

xl(k) =x(k,k)

x2(k) =x(k+l,k)

xS(k) =x(l,k) if k _< L

=x(k-L,k) if k > L

L Lag constant

b(k,n) Estimate of parameter vector at time-point
k after processing measurements at time-
points n through N and n 2: k

xT(k) True parameter vector at time-point k

R~(k,n) - x(k,n)-xT(k)

b(k,n) =b(k,n).-xT(k)

P(k,n) Estimated covariance of ic(k,n)

P1(k) = P(k,k)

P2(k) - (k+l1k)

PS(k) =P(l,k) if k < L

= P(k-L,k) if k .> L
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B(k,n) Estimated covariance of b(k,n)

M(j,k) State transition matrix relating the
parameter vectors (system states) at time-
points j and k.

M(k,j) M=~k-

W(k) State noise. See equations (2.4.1) and (2.4.2)

Q(k) = E W.(k)W(k)T

A(k) = P(k,k)M(k+,k)T P(k+,k-l

C(j,k) = A(j)A(j+1).. ..A(k) [Defined only for k j]i

Cl(k) = C(h,k), where h~l (mod L)
and k-L'h~k

C2(k) C(k+l-L,k) [Defined only for k > LI

dP(k) Change in covariance of parameter estimate
at time-point k [See Equations (2.2.6) and
(2.2.7)]

dx(k) Change in parameter estimate at tim~e-oint
k [See equation (2.2.13) and 2 .2.14)7

AP(k) =P(k-L,k) - P(k-L,k-L)

=PSMk - P1(k-L)

Ax(k) = x(k-L,k) - x(k-L,k-L)

= xS(k) - xl(k-L)

G(k) Kalman gain matrix (See equation (2.2.8)1

H(k) Matrix of partial derivatives of measurements
with respect to parameters

Z(k) Vector of measurements

r Measurement noise

R = Err T

F(k) - P(k,N) - P(k,N+l)
f(k) - x(kN+l) - x(k,n)
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2.2 Filter and Smoother Equations

The following formulae will be derived.

P(k+l,k) = M(k+l,k)P(kk)M(k+l,k) T+Q(k), (2.2.1)

A(k) = P(k,k)M(k+l,k)T P(k+l,k)-l (2.2.2)

C(j,k) = C(k,k-l)A(k) (2.2.3)

C(j ~k-1) = A(j-1) 'C(J-l,k-l) (2.2.4)

C(j,j-l) I, the identity matrix (2.2.5)

P(k-il,k+l) = P(kJl,k) - dP(k+l) (2.2.6)

dP(k+l) =G(k+1)H(k+l)P(k+l,k) (2.2.7)

G(k+l) P(k+l,k)H(k+l) T[R(k+l) +

+ H(k+l)P(k+l,k)H (k+1)T]1 (2.2.8)

p(lk+l) = P(1,k) - C(l,k)dP(k+l)C(1,k)T  (2.2.9)

P(k+1-Lk+l) =P(k+1-L,k-L) +

+ A(k-L)-'AP(k)A(k-L)-T

- C(k+1-L,k)dP(k+l)C(k+l-Lk)T  (2.2.10)

AP(k) =P(k-L,k) - P(k-L,k-L) (2.2.11)
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1

x(k+lk) = M(k+lk)x(kk) (2.2.12)

x(k+l,k+l) = x(k+l,k) + dx(k+l) (2.2.13)

dx(k+l) =G(k+l)[Z(k+l)-H(k+l)x(k+l,k)] (2.2.14)

x(l,k+l) = x(l,k) + C(lk) dx(k+l) (2.2.15)

x(k+1-L,k+l) = x(k+l-L,k-L) + A(k-L)-'Ax(k)

+ C(k+l-L,k) dx(k+l) (2.2.16)

Ax(k) = x(k-L,k) - x(k-Lk-L) (2.2.17)

The significance of the most important of the above

equations may be described as follows:

Equations (2.2.1) and (2.2.12). Covariance and parameter

vector propagation from time-point k+l in the absence of any

measurements passed time-point k.

Equations (2.2.6) and (2.2.13). Covariance and parameter

vector update at time-point k+l, after the measurements at time-

point k+l have been processed.

Equations (2.2.9) and (2.2.15). [Fixed point smoother]

Estimated covariance and vector at the initial time-point after

the measurements at the first k+1 time-points have been processed.

-7-



Equations (2.2.10) and (2.2.16). (Fixed lag smoother]

Estimated covariance and vector L time intervals prior 
to latest

measurement point. As can be seen from equation (2.2.11) and

(2.2.17) the smoother estimate for the previous time-point is

always needed in the calculations. The fixed point smoother

is used to get such an estimate for the initial time-point.
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2.3 Change in notation to facilitate programming.

The following definitions are introduced

P1(k) P(kk) (2.3.1)
P2(k) =P(k+lk) (2.3.2)
PS(k) = P(lk) if k;S L (2.3.3)
PS(k) = P(k-L,k) if k > L (2.3.4)

Cl(k) C(h,k), where (2.3.5)

h E1 (mod L) (2.3.6)

and

k-L < h :5 k (2.3.7)

C2(k) =C(k+l-L,k) (2.3.8)

xl(k) =x(k,k) (2.3.9)
x2(k) =x(k+l,k) (2.3.10)
xS(k) = x(l,k) if k:5 L (2.3.11)
xS(k) = x(k-L,k) if k > L (2.3.12)

Equations (2.2.1) through (2.2.17) may now be rewritten

in the new notation. Since there is no risk of confusion, the

indices for Q, M, G, H, R, dP, AP, dx and Ax will be dropped. We

find that

P2(k) = M Pl(k)MT + Q (2.3.13)

A(k) - Pl(k)M TP2(k)-1 (2.3.14)

C1(k) - A(k) for k -= 1 (mod L) (2.3.15)

C1(k) - Cl(k-l)A(k) for k 1 (mod L) (2.3.16)
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C2(k) = A(k-L)-l C2(k-l)A(k) for k 0 (mod L) (2.3.17)

C2(k) = Ci~k) for k =-0 (mod L) (2.3.18)

[Note that repeated use of equation (2.3.17) for the

computation of C2 will result in numerical inaccuracy.

C2 is, therefore, reset every L cycles using equation

(2. 3.18)]

Pl(k+l) = P2(k) - dP (2.3.19)

dP =GH P2(k) (2.3.20)

G =PHT[R + H P2(k) HT]-' (2.3.21)

PS(k+l) = PS(k) - Cl(k) dP Cl(k)T for k:5 L (2.3.22)

PS(k+l) = P2(k-L) + A(k-L)-1 AP A(k-L)-T

- C2(k) dP C2(k) T for k > L (2.3.23)

A= PS(k) - P1(k-L) (2.3.24)

x2 (k) = Mxl (k) (2.3.25)

xl(k+l) =x2(k) + dx (2.3.26)
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dx -G[Z -H x2(k)] (2. 3.27)

xS(k+l) -xS(k) + Cl(k)dx, for k:5 L (2.3.28)

xS(k+l) x2(k-L) + A(k-L)-1 Ax + C2(k)dx
for k > L (2.3.29)

Aix = xS(k) - xl(k-L) (2.3.30)

It can be seen from the above that variables P1, P2,

A, x1 and x2 require L storage blocks each, but for the remaining

quantities only the last computed value need be maintained in

computer memory.



2.4 Derivation of equations

The state-transition matrix M(k+l,k) relates the

true parameter vector xT(k) at time-point k to the corresponding

vector at time-point k+l through the equation

xT(k+l) - M(k+l,k)xT(k) + W(k), (2.4.1)

where the term W(k) arises due to our lack of knowledge of the

system. W(k) is thus unknown to us. However, we shall assume

that

EW(k) = 0, EW(k)W(k)T = Q(k) (2.4.2)

and W(k) and W(m) are assumed to be uncorrelated if k # m. For

the forward prediction formula we obtain a similar formula

x(k+l,k) = M(k+l,k)x(k,k) (2.4.3)

[Same as equation 2.2.12.]

whence the error i must satisfy,

R(k+l,k) - M(k+l,k)R(k,k) - W(k) (2.4.4)

The covariance propagation equation (2.2.1) follows from the

above and equation (2.4.2).
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The backward prediction formula corresponding to equation

(2.4.3) is given by

b(k,k+l) = M(k,k+l)b(k+l,k+l) (2.4.5)

with the error b being given by

b(k,k+l) = M(kk+l) [b(k+l,k+l) + W(k)j (2.4.6)

From the above and equation (2.4.2) it follows that the covariance

is given by

B(k,k+l) = M(k,k+l)[B(k+l,k+l) + Q(k)]M(k,k+l)T (2.4.7)

whence

B(k+l,k+l) = M(k+l,k)B(k,k+l)M(k+l,k)T - Q(k) (2.4.8)

Adding equations (2.2.1) and (2.4.8) we obtain

P(k+l,k)+B(k+l,k+l) = M(k+lk) [P(k,k)+B(k,k+l)]M(k+l,k)
T

(2.4.9)

Since the forward parameter estimate, x(k,k), is based

on measurements 1 through k, and the backward estimate, b(k,k+l),

is based on measurements k+l through N, it follows that the two

estimates are statistically independent. We may thus use formulae

(B.1) and (B.2) in Appendix B to get the smoothed solution at

time-point k:

-13-



x(kN) P(k,N)[P(kbk)-1 x(k,k)+B(k,k+lY-'b(k,k+)] , (2.4.10)

P(kN) = [P(k,k)-1+ B(k,k+l)11 (2.4.11)

The above argument also applies to estimates x(k,k-l)

and b(k,k), which may be combined to yield formulae similar to

(2.4.10) and (2.4.11). At time-point k+l we thus obtain

x(k+1,N) = P(k+1,N)[P(k+l,k)-1x(k+lk)+B(k+l,k+1Y1'

b (k+1, k+1)] (2.4.12)

P(k+1,N) =[P(k+l,ky
1'+B(k+l,k+lr-'] (2.4.13)

From the above equation we deduce that

P(k+l,N) = B(k+l,k+1)[P(k+l,k) + B(k+lk+1)lP(k+l,k)

=P(k+1,k) - P(k+l,k)[P(k+lk) + B(k+l,k+1)11 P(k+1,k)

From the above and equation (2.4.9) we obtain

P (k+1, N) = P (k+1, k)

-P(k+1,k)M(k+l,k)-T[p(k,k) + B(k,k+l)J-

M(k+1,k)- 1P(k+l,k) (2.4.14)

Since by equation (2.2.2)

P(k+1,k)M(k+l,k-T = A(k)1 'P(k,k). (2.4.15)
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it follows that

P(k+1,N) =P(k+lk)

-A(k)1'P(k,k)[P(k,k) + B(k,k+l)1 1 P(k,k)A(k)-T (2.4.16)

From equation (2.4.11) we find that

P(k,N) = P(k,k)[P(k,k) + B(k,k+l)j IB(k~k+l)

= P(k,k) - P(k,k)[P(k,k) +B(k,k+l)] IP(k,k)

(2.4.17)

From the above and equation (2.4.16) we deduce that

P(k+1,N) = P(k+l,k) +I A(k)Y1[P(kN)-P(k,k)IA(k)-T

(2.4.18)

Let

F(k) = P(k,N) - P(k,N+1) (2.4.19)

It then follows from equation (2.4.18) that

F(k+l) = A(k)-1 F(k)A(k)-T (2.4.20)

and hence that

F(k) = A(k) F(k+l) A(k)T (2.4.21)

From the above we deduce that

F(k) - A(k)A(k+).. A(N)F(N+1)A(N) T .. .A(k)T (2.4.22)

For J:5k, Define C(j,k) by

C(Jk) A(j)A(j+1)... .A(k) (2.4.23)
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It can easily be seen that the above definition is consistent

with equations (2.2.3) through (2.2.5). From equations (2.4.22)

and (2.4.23) we obtain

F(k) = C(k,N)F(N+1) C(k,N)T (2.4.24)

It follows from equations (2.4.19) and (2.4.24) that

P(k,N+l) = P(k,N)-C(k,N)[P(N+,N)-P(N+1,N+)

C(k,N)T (2.4.25)

Replacing k by 1 and N by k in the above equation we obtain

P(l,k+l) = P(l,k) - C(l,k)dP(k+l)C(l,k)T (2.4.26)

where

dP(k+l) = P(k+l,k) - P(k+l,k+l) (2.4.27)

The derivation of equations (2.2.6) through (2.2.8) is given in

Appendix C. Since equations (2.4.27) and (2.2.6) are equivalent

it follows that equations (2.4.26) and (2.2.9) are identical.

In order to derive equation (2.2.10) we first substitute

k-L for k and k for N in equation (2.4.18) thus obtaining

P(k-l-L,k)-P(k+I-L,k-L)+A(k-L) -AP(k)A(k-L) - T  (2.4.28)

where AP(k) is given by equation (2.2.11)

-16-



In equation (2.4.25) we substitute k+l-L for k and k

for N:

P(k+l-L,k+l)=P(k+l-L,k)-C(k+l-L,k)dP(k+l)C(k+l-L,k) T  (2.4.29)

where 6P(k+l) is defined by equation (2.4.27). Equations

(2.4.28) and (2.4.29) may be seen to be equivalent to equation

(2.2.10). This completes the derivation of equations (2.2.1)

through (2.2.12). Equations (2.2.13) and (2.2.14) are derived in

Appendix C.

We shall now proceed to derive equations (2.2.15) through

(2.2.17). It follows from equations (2.4.12) and (2.4.13) that

x(k+1,N) = b(k+l,k+l)

+ P(k+l,N)P(k+l,k)-'[x(k+l,k)-b(k+l,k+l)j (2.4.30)

From the above and equations (2.4.18), (2.4.3) and (2.4.5) we

deduce that

x(k+l,N) = b(k+l,k+l) +[x(k+l,k)-b(k+l,k+l)]

+A(k)- t[p (k,N) -P (k,k)] A(k)-TP (k+l ,k)- - •

M(k+l,k)[x(k,k)-b(kk+l)] (2.4.31)

whence by equation (2.2.2),

x(k+lN) = x(k+l,k)

+A(k)- [P(k,N)-P(k,k)] P(kk)-[x(k,k)-b(k,k+l)1,
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i.e.,

x(k+1,N) x(k+1,k)+A(k)-'I-x(k,k) +

P(kN){P(k,k)1 [x~k,k)-b(k,k+)I + P(k,N)-1 b(k,k+1)11,

whence by equations (2.4.11) and (2.4.10)

x(k+1,N) = x(k+1,k)+A(kY11[x(k,N)-x(k,k)] (2.4.32)

Let f(k) =x(k,N+l) - x(k,N) (2.4.33)

Hence f(k+l) = A(k)1If(k) (2.4.34)

and f(k) = A(k) A(k+1). .. .A(N)f(N+1) (2.4.35)

Using equation (2.4.23) we deduce that

f(k) = C(k,N)f(N+1) (2.4.36)

Hence,

x(k,N+1) = x(k,N) + C(k,N)dx(N+1), (2.4.37)

where

dx(N+1) =x(N+1,N+1) - x(N+1,N) (2.4.38)

If in the above two equations we substitute 1 for k and

k for N we obtain equation (2.2.15) and the equivalent of equation

(2.2.13). In order to derive equation (2.2.16) we first substitute

k-L for k and k for N in equation (2.4.32), thus obtaining
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x(k+1-L,k) x(k+l-L,k-L)

+A(k+L) -Ax(k), (2.4.39)

where Ax(k) is given by equation (2.2.17). In equation (2.4.37)

we substitute k+l-L for k and k for N:

x(k+l-L,k+l) x(k+l-Lk) + C(k+l-Lk)dx(k+l), (2.4.40)

where dx(k+l) is defined consistently with equation (2.2.13).

It is easily seen that equations (2.4.39) and (2.4.40) may be

combined to yield equation (2.2.16). This completes the derivation

of the filter equations.
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3. Modelling of the Drag Coefficient

The drag coefficient ismodelled as a constant plus

a small perturbation xp, which satisfies the differential equation

cp(t) = -xp(t)/Tp + vp(t), (3.1)

where a dot denotes differentiation with respect to t and vp

is a random variable with

E vp(t) = 0, and (3.2)

E vp(tl)vp(t2) = 6(t2 - tl) 2Qp/Tp, (3.3)

where 6(t) is the Dirac delta function.

Making the substitution

s = t/Tp, (3.4)

and defining

xp(t) = x'(s), (3.5)

where a prime denotes differentiation with respect to s, we

deduce that

x"(s) + x'(s) = Tp vp(t) (3.6)

If further we define v(s) - Tp vp(t) then it follows from

equations (3.2), (3.3) and equation (D. 38) in Appendix D that
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E v(s) 0, and (3.8)

Ev(sa)v(sb) = 6[(sa-sb)Tp]T 2Q/Tp

= 2Q 6(sa-sb) (3.9)

Comparing equations (3.5) through (3.9) with equations

(D.1) through (D.3) we deduce from equations (D.7) and (D.10)

that

xp(t) = gp xp(to) + hp(t), (3.10)

where

gp exp[-(t-to)/Tp], (3.11)

Ehp(t) = 0, (3.12)

and

Efip(t) 2 = Qp[l - gp2] (3.13)

Equations (3.10) through (3.13) may be seen to correspond

to equations (2.4.1) and (2.4.2). In order to interpret Qp and

Tp we note that if t is much greater than to then gp is negligibly

small. We hence find from equations (3.10) and (3.13) that

E xp(t) 2 = Qp (3.14)

From equation (D.33) we deduce with the aid of equation (3.4) and

(3.5) that
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Exp(t)xp(t+At) = exp(-At/Tp) (3.15)

E xp(t)xp (t)

This concludes the description of the modelling of the drag

coefficient.

3.1 Simulation of Drag Coefficients.

Equations (3.10) through (3.13) are used in the simulation

of drag coefficients. fip(t) is chosen as a normally distributed

random variable satisfying equations (3.12) and (3.13).
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4. Modelling of Clock Bias

The clock bias b(t) is modeled as the integral of the

clock bias rate b(t), which itself satisfies the differential

equation

b(t) = - b(t)/Tb + vb(t), (4.1)

where a dot denotes differentiationwith respect to t and vb is

a random variable with

E vb(t) = 0, and (4.2)

E vb(t,)vb(t2) = 6(t 2 - tj)2 Qb/Tb2  (4.3)

where 6(t) is the Dirac delta function.

Making the substitution

s = t/Tb (4.4)

defining

b(t) = x(s) (4.5)

and denoting differentiation with respect to s by a prime, it

follows that

x"(s) + x'(s) = v(s), (4.6)

where

v(s) - vb(t) Tb2  (4.7)
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From equations (4.2), (4.3), (4.7) and (D.38) in Appendix D,

we conclude that

E v(s) =0 (4.8)

and

E v(sl)v(sz) = 60s2 -sj) 2 Qb Tb (4.9)

Comparing equations (4.6), (4.8) and (4.9) with equations (D.1)

through (D.3) in Appendix D, we conclude with the aid of equations

(D.6) through (D.12) and (4.4) and (4.5) that

b(t) =b(to) + (l-gb)b'(to) + h(t), (4.10)

b'(t) -gb b'(to) + h'(t), (4.11)

where

gb =exp((Co-t)/Tp]. (4.12)

and h(t), h'(t) are random variables satisfying

E h(t) = E h'(t) =0 (4.13)

E h (t) 2 = QbL2(t-to) - Tb(1-gb)(3-gb)] (4.14)

E h(t)l - Qb Tb(1-gb 2) (4.15)

E h(t)h'(t) - Qb Tb(1-gb)2  (4.16)
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From equations (4.15), (4.11) and (4.4) we deduce that for large

values of t

E b(t) 2 = Qb/Tb (4.17)

From equations (D.33), (D.34), (D.35), (D.3), (4.4), (4.5) and

(4.9) we find that for large valuer of t

E b(t)b(t-At - exp (-At/Tb), (4.18)

E b(t)b(t)

E[b(t)-b(t+At)]2 = 2Q[At-Tb(l-exp-At/Tb)], (4.19)

If At is small compared with Tb the above equation reduces to

E[b(t) - b(t+At)] 2 = (Q/Tb)(At)2  (4.20)

4.1 Simulation of Clock Bias.

Equations (4.10) through (4.16) are used in the

simulation of clock bias. First h(t) is chosen as a normally

distributed random number satisfying equations (4.13) and (4.14).

Defining a, e, c by

a = E h(t) 2  e = E h'(t)2, c = E h(t)h'(t), (4.21)

h'(t) is then computed as

h'(t) = h(t) c/a + k(t), (4.22)
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where k(t) is another normally distributed random number

satisfying

E k(t) = 0 (4.23)

and

E k(t)2 - e - c2/a (4.24)

Since h(t) and k(t) are independently chosen random

variables, it follows that h(t) and h'(t), computed as described

above, will be consistent with equations (4.13) through (4.16).
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. The State Transition Matrix and the Linearization of the

Equations of Motion

5.1 Definition of terms and linearization of the equations

of motion.

Y six parameter nominal position-velocity vector

P nominal (and constant) drag coefficient

Y + y perturbed six parameter position-velocity vector

P + p perturbed drag coefficient

b clock bias

b' clock bias rate

x Nine parameter state vector

T (yT p, b, b') (5.1.1)

= F(YP), (5.1.2)

Differential equation satisfied by nominal
position-velocity vector

+' F(Y + y, P + p), (5.1.3)
Differential equation satisfied by perturbed
position velocity vector

+ 9 F(Y,P) + Fy(Y,P)y + Fp(Y,P)p, (5.1.4)
Linearized form of equation (5.1.3).
Fy(Y,P) is a 6 x 6 matrix of partial derivatives
and Fp(Y,P) is a 6-vector of partial derivatives

*(t,S) =  y(t)/ay(s), 6 x 6 state-transition matrix (5.1.5)

D(t,s) = Oy(t)/aP (5.1.6)

where D(s,s) = 0. Vector of partial derivatives
of the 6 parameter state vector with respect to
a constant change in the drag coefficient at time
6.

M(t,s) = 3x(t)/ax(s), 9 x 9 state-transition matrix (5.1.7)

G(t) = Fy(YP), H(t) = Fp(Y,P),
where Y is a function of time but P is a constant (5.1.8)

e Epoch Time (start time of integration of nominal orbit)
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5.2 Computational equations for the state transition matrix.

M(ts) = O(ts) D(ts) 0 0 (5.2.1)

0 gp o o

0T o 1 1-gb

O o o gb

where 0 is a six dimensional null vector and o is a scalar zero.

0(ts) = 0(t,e)O(se)- 1 (5.2.2)

D(t,s) = D(t,e) - 0(ts)D(s,e) (5.2.3)

5.3 Derivation of equations.

The right-hand side of equation (5.2.1) follows from

the definitions of M(t,s), 0(t,s) and D(t,s) and also from

equations (3.10), (4.10) and (4.11). Equations (5.2.2) and

(5.2.3) remain to be derived. It follows from equations (5.1.2),

(5.1.4) and (5.1.8) that

y(t) = G(t)y(t) + H(t)p(t). (5.3.1)

*(t,e) is obtained as the solution of the differential equation

j(t,e) = G(t)O(te) with O(e,e) = I, (5.3.2)

and D(t,e) as the solution of
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D(t,e) =G(t)D(t,e) + H(t), (5.3.3)

with D(e,e) = 0 (5.3.4)

We wish to show that

y(t) = *(t~s)y(s) + D(t,s)p(s) (5.3.5)

is a solution of equation (5.3.1) and furthermore that in order

that the left and right hand sides of equation (5.3.5) be

consistent,

cO(s,s) = I and D(s,s) =0 (5.3.6)

Differentiating equati on (5.3.5) with respect to t we deduce

with the aid of equations (5.2.2), (5.2.3), (5.3.2) and (5.3.3)

that

y(t) =G(t)O(t,s)y(s) + [G(t)D(t,e) + H(t)

-G(t)O(t,s)D(s,e)]p(s),

i ~ )=Gt)~~~~e.,Gt)~~)+ ~)ps

y~)= G(t)[O(t,s)y(s) + [GD(t,s) )+ H(t)]p(s).

With the aid of equation (5.3.5) the above equation

can be seen to reduce to
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y(t) G(t)y(t) + H(t)p(s) (5.3.7)

Equations (5.3.6) can be seen to follow from equations

(5.2.2) and (5.2.3). Equation (5.3.7), however, is not identical

to equation (5.3.1), but it is a good approximation to it pro-

vided that the drag perturbation p changes but little in the time

interval (s,t). This we shall assume to be the case.
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6. Simulation of Measurements Involving the Global Positioning
9ystem (GPS)

6.1 Brief Description of GPS

GPS consists of a set of satellites, whose positions

and velocities are known to all users of the system. These

satellites transmit radio signals at fixed intervals. The

clocks of the GPS satellites are extremely accurate. They are

also mutually synchronized. If the user's clock also were

synchronized with the GPS clocks, then the user could calculate

his distance to each GPS satellite (provided of course that

he could see it). Given three distances to three known positions,

the user may then solve a simple geometric problem to obtain his

own position. If the user clock is not very accurate, then the

user may instead process the signal from a fourth satellite to

give similar results.

Specifically, GPS consists of 24 satellites arranged

in 3 rings of 8 equally spaced satellites (see Figures 6.1 and

6.2). Each satellite is in a 12 hour (26610 km radius) circular

orbit with an orbital inclination of 63 degrees. The longitudes

of the ascending nodes of the satellite orbits are 0 degrees

for those in ring 1, 120 degrees for those in ring 2, and 240

degrees for those in ring 3. Since the satellites of each ring

are equally spaced the angular distance between them must be

45 degrees. For each ring a satellite must thus cross the

equator from South to North every 90 minutes (another satellite
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simultaneously crosses from North to South). The satellites of

the three rings are phased relative to each other such that a

satellite will cross the equator South to North every 30 minutes.

The order is ring 1, ring 2, ring 3, ring 1 ..... The three rings

must obviously intersect one another.. However, no two satellites

will ever approach each other closer than 10.4 degrees. The

orbital paths intersect each other at a latitude of 44.5 degrees

(North and South). At the point of intersection, satellites of

two different rings approach each other at 101 degrees. The

longitudes of the intersections in the Northern Hemisphere occur

at 30 degrees (I ascending, 3 descending), 150 degrees (2 ascending,

1 descending) and 270 degrees (3 ascending, 2 descending).

6.2 Cartesian Coordinates of the GPS Satellites

The position of each GPS satellite may be specified

(i) by the longitude Q of the ascending node of its orbit

(0 degrees for ring 1, 120 degrees for ring 2, 240 degrees for

ring 3), and (ii) by its angular distance w from that node. w

is computed from the formula

= Wo + nAw + wt, (6.2.1)

where wo equals 0 degrees for ring 1, 30 degrees for ring 2, and

15 degrees for ring 3,

Aw equals 45 degrees,

n is the satellite number
(n = 0, 1,..., 7 for each ring),

= 360 degrees/12 hours, and t is
time from midnight.
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Let p and 4 be two unit vectors lying in the orbital plane,

p pointing towards the ascending node and q pointing towards

the point of highest latitude. Then

p = (cos P, sin Q, 0) and (6.2.2)

q = (-sin Q cosi, cos Scosi, sin i), (6.2.3)

where i is the orbital inclination. The satellite position

is then given by

r = p cos w + q sin w (6.2.4)

6.3 GPS Measurements and their Partial Derivatives

The Cartesian coordinates of each GPS satellite is

given by a formula of the form (6.2.4). To distinguish between

the different satellites we add a subscript. Thus, r,

(j = 1, 2, ...24) is defined as the position vector of the j-th

GPS satellite. Similarly we define i as the position vector of

the user. The GPS measurement to GPS satellite number j is then

given by

d j a ,j T (r r) + b, (6.3.1)

where b is a biaa term due to a user clock error. We define the

unit vector v. by

v (ij - i)/(dj - b) (6.3.2)
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Differentiating d. with respect to r we obtain

= -v. (6.3.3)

Also

3d /ab = 1 (6.3.4)

The GPS measurement vector (Z(k) in Section 2) is

made up of four measurements of the form (6.3.1). The partial

derivative matrix (H(k) in Section 2) is made up of the corres-

ponding partial derivatives as given by equations (6.3.3) and

(6.3.4).

6.4 GPS Simulations

The problem to be solved in GPS simulations, just as

in real situation scheduling, is how to choose 4 GPS satellites

out of 24 so as to be able to derive the best possible user

position. Since a user satellite has a clear 'horizon', he can

see roughly a hemisphere of GPS satellites. This, on the average,

amounts to 12 satellites. There are 495 different ways to pick

4 out of 12. To find the best 4 it is necessary to test each

combination. To do so at every time point is impractical. The

following is a suboptional but good scheme for the selection

process. (Further details are given in Appendix E.)

6.4.1. Satellite visibility. It is of course necessary

that each selected GPS satellite be visible to the user. In order

that the satellite not be visible two criteria must be met
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(i) The satellite must appear below the user's
'horizon', i.e.

T < 0, (6.4.1)

(ii) The satellite to user line of sight must
intersect the Earth, defined for this purpose
as including an atomsphere 100 km above the
surface, i.e.

rTr < (.~ r) + r2 (6.4.2)

where x is the radius of the earth as defined

above. e

6.4.2. Selection of first satellite. The first

satellite is somewhat arbitrarily chosen as the one that is

T-highest in the sky (v. r is a maximum). There is no loss of

generality in designating this as satellite number one (j = 1).

6.4.3 Selection of second satellite. It can be

shown (see Appendix E) that the optimal geometric configuration

obtains when the angles between the four lines of sight are all

equal. This is possible only if the angles equal cos-'(-1/3) or

109.5 degrees. The second satellite is therefore chosen such

that

Ivvj +

is a minimum. This satellite is designated satellite number 2

(j = 2).

6.4.4 Selection of the third satellite. It is shown

in Appendix E that given two satellites (1 and 2) then the optimal

geometric lines of sight for satellites 3 and 4 must satisfy:
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(i) v 3 and V 4 lie in a plane perpendicular

to that defined by v, and v 2 ,

(ii) v 3 + V4 is diametrically opposite to vI + v 2 .

(iii) If the angle between v, and v2 is 2a, and the
angle between v 3 and v4 is 20, then

coss = .327 cosa - .765 (6.4.2)

The procedure then is to define two unit vectors u 3 and u4

satisfying the above three criteria and then finding the third

satellite such that Tu, where u = u 3 or u4 , is maximized.

This satellite is designated number 3 (j = 3). u3 and u4 are

computed as follows:

cos a = (1 + vT v2 )/2 (6.4.3)

coso is then computed using equation (6.4.2).

Hence

sin 0 f /= - cos 20 (6.4.4)

The vector c is defined by

c = (vI + v2) coso/2cosa, (6.4.5)

and the vector e by

e = (VIAV 2 )sin8 1 - (ViV 2 ) (6.4.6)

Then

u 3 
= c + e and u 4 = c -e (6.4.7)
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6.4.5 Selection of the fourth satellite. Given 3

satellites the fourth one is selected optimally as follows:

(For derivation of the formulae see Appendix E). Define the

matrix

TAo = [vI, v 2 , v 31 (6.4.8)

Then
Thefi [v2Av3, v3Avi, VAV2]/[(v iAv2 ).v 3] (6.4.9)

Define the vector do by

do = [1, 1, I]r  (6.4.10)

Then compute

eo = Ail d0 ,and eoo = AT eo (6.4.11)

The fourth satellite is then found by minimizing the expression

T T T2 h4 eoo f + h4 eo eo(l+f f), (6.4.12)

where

h= ( - v~eo) -  (6.4.13)

and

f - ATv (6.4.14)
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FIGURE 6. 1
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FIGURE 6.2

GPS SATELLITE SYSTEM
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7. Drag Segments in an Orbital Arc.

In most cases the drag coefficient of an orbital

satellite is a constant. This is true even if the shape of the

satellite is not spherically symmetric, provided that the satellite

presents the same aspect angle along its direction of motion.

In the equations of motion the drag coefficient always appears

as a factor multiplying the atmospheric density. It is thus

possible to compensate for density variations through corresponding

changes in the drag coefficient. This is often done in practice.

The capability to do that has now been added to Photonap. The

program has been modified to include a number of different drag

segments. Each drag coefficient may be constrained either to

some a priori value (absolute constraint) or the coefficients

of contiguous segments may be constrained relative to each other

(relative constraints).

7.1 Partial Derivatives of the State Vector with Respect

to the Drag Coefficients.

Let

Y = F(Y,Pk01 (7.1)

denote the differential equation governing the satellite motion.

Y is the state vector (position-velocity vector) and Pk is the

drag coefficient in segment k valid in the interval between times

tk and tk+l. Let y and Pk denote a small perturbations in Y and

Pk' respectively. Then
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y= T F(YPk) y + p F(Y,Pk)Pk (7.2)
'gk

Writing G - BF(YPk)/aY (7.3)

and

H = aF(Y,Pk)/D P k (7.3)

the above equation may be written as

y = Gy + HPk (7.4)

To indicate that y, C and H are functions of time we

rewrite the equation in the form

y(t) = G(t)y(t) + H(t)Pk (7.5)

The 6 x 6 state transition matrix *(t,e) is defined

as the solution of the differential equation

*(t,e) = G(t)O(te), (7.6)

with

O(e,e) = I, (7.7)

e being the time of Epoch.

The six-vector of drag partials, Dk(t) is defined as

the solution of the differential equation

Dk(t) = G(t)Dk(t) + H(t), (7.8)

with Dk(tk) - 0, (7.9)

-41-



and Dk(t) being defined only in the interval [tk, tk+l]. Equation

(7.5) is similarly, for each value of k, valid only in the interval

[tk, tk+l]. The solutions of equations (7.5) must be continuous

and satisfy the initial conditions

y(t,) = 0, (7.10)

where t, f e, the Epoch Time.

It will now be shown that if

t k _< t _< tk+I  (7.11)

then equation (7.5) is satisfied by

k
xk(t) = 0(t,e) 2 *(ti,e) - D (ti)

+ Dk(t)pk (7.12)

Differentiating equation (7.12) with respect to t,it

can easily be seen that equation (7.5) is satisfied. It remains

to be shown that the solution is continuous, i.e., that Xk(tk) f

xk-l(tk). From equation (7.12) we obtain

k-1
xk-l(tk) = 0(tke) I 2(ti,e)-1 Di_l(ti)pi_I

i=2

+ Dk-l(tk)Pk_1, (7.13)

The above equation may be rewritten as

k
Xkl(tk) f *(tke) . 0(ti,e )  Di_(ti)Pi_(

i=21Di(ipi (.4
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From equations (7.9), (7.12) and (7.14) we deduce

that

Xk-l(tk) = xk(tk) (7.15)

Since x,(t 1 ) - 0 it follows that xk(t) as given by equation

(7.12) is the required solution of equation (7.5), i.e., for t

satisfying equation (7.11),

k
y(t) = *(te) I (ti,e)-1 D. 1 (ti)pi1

i=2

+ Dk(t)Pk (7.16)

It hence follows that the required partial derivatives

are given by

for t ?_ ti+ l , Dy(t)/api = (te)O(ti+l,e)-'Di(ti+l )

for ti _ t!5 ti+ I , ay(t)/api = Di(t) (7.17)

for t 5 ti , Dy(t)/api = 0

7.2 Absolute and Relative Constraints

To obtain the solution Sp of a linearized weighted least

squares problem, an equation of the following form must be solved

N 6p - b (7.18)
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In the above equation, N is a positive-definite matrix

(the normal equations coefficient matrix) and b a vector (the

normal equations vector). Using the summation convention equation

(7.18) may be written in index form as

N(ij)6p(j) = b(i) (7.19)

If all measurements are statistically independent, then

N(ij) and b(i) are computed as the sum of terms of the form

3m 3m

AN(ij) = W am a (7.20)

and

Abi m (mo-m) , (7.21)Ab(i) = W 3m

where W, the measurement weight is inversely proportional to the

variance of the measurement error,

m0 is the observed measurement

and m is the measurement calculated as a function

of a set of parameters p(k).

After the solution of equation (7.19) has been obtained

the estimated parameter is updated to p(k) + 6p(k).

7.2.1 Absolute Constraints. If,a priori,we know that

parameter p(i) = ai and that the error in ai has a variance of 02,

then we may treat that information in exactly the same way as

measurement information. Hence mo = ai, m = p(i) and Dm/3p(i) = 1.
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In accordance with equations (7.20) and (7.21) the contributions

to N and b are then given by

AN(ii) = a- ' (7.22)

Ab(i) = a- 2 (a i - p(i)) (7.23)

7.2.2 Relative Constraints. If, a priori, we know

that parameters i and j should assume the same value and that the

error in this assumption has a variance of a2, then we may treat

this information exactly the same way as measurement information.

Hence m0 
= 0, m = p(i) - p(j), am/Dp(i) = 1 and Dm/3p(j) = -1.

In accordance with equations (7.20) and (7.21) the

contributions to N and b are then given by

AN(i,i) = -2

AN(ij) = -U- 2  (7.24)

AN(j,j) = U
- 2

and

Ab(i) = C - 2 p(j) - p(i)

(7.25)
Ab(j) = a- ' p(i) - p(j)

Note that m could equally well have been defined by m = p(j) - p(i).

The result, however, would be the same.

-45-



8. The Lockheed-Jacchia Atmospheric Model

The equations presented in this section are based

partly on some equations supplied by Mr. George Stentz of DMAAC,

St. Louis, MO and partly on a computer program listing from the

same source. Part of the description comes from (Jacchia, 1960).

A modified version of the DMAAC program has been incorporated in

Photonap.

8.1 Description of Variables and Constants used in the Program.

Angle between point of interest and point of maximum
solar heating effect as seen from the center of the
Earth.

/l+cosP 3

= .55 radians. Lag angle. Angle between the sun and
the point of maximum solar heating as seen from the
center of the Earth.

t Time (in days) from noon on January 1, 4713 B.C.

DO =2436204. Number of days between January 1, 1958

and January 1, 4713 B.C.

to Time (in days) since noon on December 31, 1957.

W .017203 radians/day. The Earth's orbital rate
about the sun

L Longitude of the Sun measured along the ecliptic from
the equinox

Lo -Longitude of the Sun when t' = 0

e = 0.01675. The eccentricity of the Earth's orbit

C = .4092 radians. Obliquity of the ecliptic
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F,0.7 10.7 cm flux mea ured in units of 100 x 1022

watt/m2 /cycle/sec

F 2 0  20 cm flux measured in same units as F 1 0 .7

Cs = 1.5}
C9  = 0.8. constants used in computation of F1 0.7

F - 21T Frequency corresponding to a period of
4020 days (approximately 11 years)

C 1 5  = 0.85 Conversion factor for converting F1 0.7

to the equivalent F 2 0

p Atmospheric Density (slugs/cu.ft)

1 dp'X = d1 log p (1/n.m.)

h Height above the surface

hi = 76 n.m.
h2= 108 n.m.
h3= 378 n.m.
h4 = 1000 n.m.

C12 = 5.606 x 10- 12 slugs/cu.ft.

d, = 7.18 unless otherwise specified by user

Cis = 153 n.m.

d2 f= -15.738 unless otherwise specified by the user
C26 = .00368 (n.m.)-
C2 7 = 6.363
C2 8  = .0048 (n.m.)-
C29 f= 0.19
C 3 0  

= .0102 (n.m.)
- I

C31 = 1.9
C36 = .00504 (slugs/cu.ft.)(n.m.)5

C3 7 = 6 x 106 (n.m.)'

1 n.m. = 1.852 km

1 slug/cu.ft. = 0.515378 x 1012 kg/km
3
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-77:-

8.2 Description of Equations

The Jacchia Atmospheric Model is a dynamic model in

the sense that it is a function, not only of position, but also

of time. The time dependence is due to solar heating. However,

since solar heating is not instantaneous, the maximum perturba-

tion to tie atmosphere will occur some time after noon, local

time (according to this model just after 2 p.m. local time). If

is a unit vector pointing towards the sun, then the maximum

perturbation will occur in the direction of ', where s and s'

point towards the same latitude, but s' towards a point X radians

further East. If a is a unit vector pointing towards the point

of interest, then cos P is defined by

cos u = • (8.1)

If U = (x,y,z) (8.2)

and s = (S,S2,S3), (8.3)

then

thn = (scosX - s2sinX, s2cosX + szsinX,s 3) (8.4)

and

COS = (sIx + s2y)cosX - (s2x - sly) sinX + s3 (8.5)

is computed using the following equations

t' t - JDO (8.6)

L = wt' + 2e sin wt' -Lo (8.7)

= (cosL, sinL cosc, sinL sinc) (8.8)
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Combining equations (8.3), (8.5) and (8.8) we obtain

cos = (xcosL + ysinL cosc)cosX

+ (-xsinL cost: + ycosL)sinX + sinLsine (8.9)

Let g be defined by

g = [cosq/2] 6 ,

i.e.,
(lcos'P)3

g = 2(8.10)

Unless input by the user the 10.7 cm flux is given by

FIo.7 = C8 + C9 + cos(WFt') (8.11)

This is converted to an equivalent flux at 20 cm by the formulae

F 2 0 = C1 5 Fjo. 7  (8.12)

For the purpose of calculating the density, the atmosphere is

subdivided into four different regions, with different sets of

formulae being valid in each region. These are given below.

Region A h 15 h _< h2

P PIP2P3, (8.13A)

where
hidi

P= c 1 2 (- L) (8.14A)

P2 =rhh + h -h F2 o (8.15A)

P I j
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+--g (8.16A)

ff - d1 +Lp' -i cF2 1
P 2 {EcTF7- J2h I(C.Ia7A)

Region B h 2 :5 h :5 h 3

p = Po q (8.13B)

where

PO - 1 0d2 - c2 6h + c27 exp(-cash) (8.14B)

and

q ='F 2o 1 + c 2 s[exp(c 3 oh)-c 3,]g} (8.15B)

Pt = logelO[c26cC2 8c 2 7exp(-c 2 eh)]+ F2 oc2 9 c3oexp(c 3 oh)g
q

Region C h 3 : -h _< h4

p b 1 b 2 , (8.13C)

where

C36 o. 7 (8.14C)
h s

g(l - C ) + C7 (8.15C)
5 3 c

i- - (l-g) h' b2  (8.16C)

Region D h ?!h4 or h _< h,

p = p' = 0 (8.13D)

Note that in all of the above equations the density is computed

in slugs/cu.ft. and p' in 1/n.m. Before being used by Photonap

these quantities are converted to kg/km3 and km-', respectively.
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9. An Outline of Program Changes

The program changes made to Photonap fall into two

categories: (i) changes to existing routines, and (ii) the

addition of new routines. Two of the existing routines, SPOLCD

and SOLVER, were initially simply modified, but owing to the routines

in the process becoming extremely lengthy and unmanageable, they

were later split into smaller routines. Thus SPOLCD was split

into SPOLCD, SPOOLI, SPOOL2 and SPO100. SOLVER was split into

SOLVER, SOLVI, SOLV2 and SOLV3. The following totally new

routines have been added:

A. Routines associated with the Lockheed-Jacchia

atmospheric model: JACHIA

B. Routines associated with drag segmentation: DRAGU

C. Routines associated with Kalman filtering and smoothing:

KMNCON, KMNEVA, KMNIDE, KMNINI, KMNINV, KMNMPl, KMNMP2,

KMNMP3, KMNRAN, KMNOUT, KINSIM, KMNSM2, INVSYM, INVSYS,

MAT99, VXPROD.

D. Routines associated with GPS measurements: SELECT

E. Routines associated with normal equations for correlated

measurements: SOLVFU, SOLAWA

In addition to the changes described above, subroutine

SVARED, after a trivial change in the coding, was found to be

superfluous, and was hence removed from Photonap.

A flow chart of Photonap together with a short descrip-

tion of each routine is given in Appendix F.
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10. Changes to the Photonap User's Guide

The following has been added to the User's Guide.

(i) Insertion into Section I of a general description

of control card set-ups for Kalman filtering and

smoothing.

(ii) Addition to 101 card input to specify Kalman filter mode.

(iii) Description of 230 card for specifying drag segments.

(iv) Addition of note (Note 13) to 601 card for handling of

drag coefficients appearing in different drag segments

of the same arc.

(v) Description of 612 card for specifying constants required

by Lockheed-Jacchia atmosphere

(vi) Description of 614 card for specifying GPS filter

constants

(vii) Addition of note (Note 5) to 701 card for processing of

correlated measurements output from Kalman filter or

smoother.

(viii) Addition to Appendix IB describing tape format for

Kalman filter input, and tape format for Kalman filter

output.

(ix) Addition of Appendix V describing example of the job

control language required for running Photonap on the

CDC 6400.
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11. Test Runs

In order to check out the modified version of Photonap

a large number of test runs were made. These included running

the standard set of Photonap test decks, which are run after

every program modification. Five new test decks, designated PB4,

PB5, PB6, PB7 and PB8, have been added to the standard set, which

now consists of

non-photogrammetric test decks TESTXX, PAl, PA2,

PA3, PA4, PA5, PA5X, PA5X2, PA6, PA7, PA8, PA9,

PBO, PB1, PB2, PB3, PB4, PB5, PB6, PB7, PB8,

Photogrammetric test decks PAA, PAB, PAC, PAD,

PAE, PAF, PAG, PAGXl,

combined test deck FATBOY.

A short description of each of the new test decks is given below.

11.1 Test Deck PB4. Lockheed-Jacchia atmosphere and multiple

drag segments. Two parts.

(1) Data generation using Jacchia Atmosphere and a

single drag segment.

(ii) Orbit and drag coefficient recovery using U.S.

Standard Atmosphere. Six drag segments with

relative constraints. Epoch coincident with start

of first drag segment.
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11.2 Test Deck PB5. Lockheed-Jacchia Atmosphere and multiple

drag segments. Two parts.

(i) Data generation using Jacchia Atmosphere and a

single drag segment.

(ii) Orbit and drag coefficient recovery using U.S.

Standard Atmosphere. Six drag segments with

relative and absolute constraints. Epoch in

middle of fourth segment.

11.3 Test Deck PB6. Six point smoother using GPS measurements.

Three part run.

(i) GPS data generation using Lockheed-Jacchia Atmosphere.

(ii) Six point smoother using U.S. Standard Atmosphere.

Smoother output of position and velocity at 30

second intervals.

(iii) Orbit comparison between the smoother output and

the orbit used in data generation.

11.4 Test Deck PB7. Filter using GPS measurements. Three

part run.

(i) GPS data generation using Lockheed-Jacchia Atmosphere.

(ii) Filter (0 point smoother) using U.S. Standard

Atmosphere. Filter output of position and velocity

at 30 second intervals.

(iii) Orbit recovery based on Lockheed-Jacchia Atmosphere.

Filter output used as measurement data.
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11.5 Test Deck PB8. Filter and smoother comparisons.

U.S. Standard Atmosphere used in all three parts:

(i) GPS data generation,

(iia) Filter,

(iib) 16 point smoother.

Comparison between orbit used in generation

(Part (i), pages 7 through 9) and the orbit

recovered (Parts (ii), pages 4 through 6)

shows the superiority of the 16 point smoother

over the filter.
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APPENDIX A

Some formulae for the differentiation of the trace of matrix

products.

Given a positive-definite matrix D and general matrices

A and F, the following three formulae will be derived.

a Trace (DFAFT) DF(A + AT) (A.1)

aF
a Trace (DFA) = DAT (A.2)

a Trace (DAF T)  DA (A.3)

Proof. Denoting the left hand side of formula (A.1) by L,

we may express it in index form as

Lij BFij DabFbcAcdFad

a,b,c,d

D ai Ajd Fad + E D ibFbc Aci

S (DTFA T + DFA)ij f

__- Since D is symmetric, formula (A.1) follows. Denoting

the left hand side of the second formula by M, we similarly

obtain:
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M i F > DabFbcAca

3.3 a,b,c

a ai

(DTAT)ij

Since D is symmetric, the second formula follows.

Denoting the left hand side of the third formula by N, we find

that

N.ij UF DabAbcFac
ij a,b,c

b ibAbjb

= (DA)ij,

which is equivalent to the third formula.
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APPENDIX B

The combination of two independent unbiased minimum variance

estimates.

Given

(i) two independent unbiased estimates a and b

of a parameter vector, whose true value is xT,

(ii) A and B, the covariances of the errors in

a and b, respectively,

then the two solutions may be combined to give a new minimum

variance solution x, with an associated covariance P, where

x = P(A-1 a + B-'b) (B.1)

and

P = (A- ' + B-1 )-1  (B.2)

Proof. Assuming x to be a linear combination of a and b, we

may write it in the form

x = Fa + Flb (B.3)

where the matrices F and F1 have to be determined. In order

that x be unbiased, we must clearly have

F' I - F, (B.4)
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where I is the identity matrix. Denoting the errors in x, a

and b by x, a and b, respectively, we deduce from equations

(B.3) and (B.4) that

= FA + (I-F)b (B.5)

Since a and b are independent it follows from the above and the

definition of the covariance that

P = FAFT + (I-F)B(I-F)T (B.6)

F is chosen such that the expected value of ,CTDR, where D is a

positive-definite matrix, is minimized. It turns out that as

long as D is symmetric and non-singular the solution is independent

of the choice of D. Remembering that if XY and YX are both

square matrices, then trace (XY) = trace (YX), it follows that

the quantity we are trying to minimize is the expected value of

trace (DRR T), i.e., trace (DP). From equation (B.6) and formulae

(A.1), (A.2) and (A.3) in Appendix A, we then deduce that

D[2F(A + B) - 2B] = 0. (B.7)

Hence

F(A + B) - B = 0, (B.8)

and

F = (A-' + B-')-'A - 1 (B.9)
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From the above and equation (B.4) we find that

F1 = (A-' + B-1 )-B -1 , (B.10)

and from equations (B.6) and (B.8) we obtain,

P B FB

BF

From the above and equation (B.10) it follows that

P = (A- ' + B-') - ',

which is equation (B.2). Equation (B.1) follows from the above

and equations (B.3), (B.9) and (B.10).
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APPENDIX C

Updating the minimum variance estimate based on new independent

measurements.

Given

(i) an unbiased estimate a of a parameter vector,
whose true value is xT,

(ii) A, the covariance of the error in a,

(iii) a measurement vector Z satisfying the equation

Z = H xT + r, where (C.1)

E(r) = 0 E(rr) = R, (C.2)

and H is a given matrix,

then the new minimum variance estimate x is given by

x = a + G(Z-Ha), (C.3)

where

G AHT(R + HAHT)- , (C.4)

and P, the covariance of the error in x, is given by

P = A - GHA (C.5)

Proof. Equation (C.3) is clearly a general form for a linear

unbiased estimate of x. We shall, therefore, assume

that x is given by equation (C.3) and then proceed to
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derive equations (C.4) and (C.5). Let R and A denote the errors

in x and a, respectively. It then follows from equations (C.l),

(C.2) and (C.3) that

xi A + G(r - HA), i.e.

= (I - GH)A + Gr (C.6)

Since A and r, by assumption, are independent, it follows that

P = (I-GH)A(I-GH)T + GRGT (C.7)

G is chosen such that the expected value of xTDR, where D is a

positive-definite matrix, is minimized. It turns out that as

long as D is symmetric and non-singular the solution is independent

of the choice of D. Remembering that if XY and YX are both square

matrices, then trace (XY) = trace (YX), it follows that the quantity

T
we are trying to minimize is the expected value of trace (DR ),

i.e., trace (DP). From equation (C.7) and formulae (A.1), (A.2)

and (A.3) in Appendix A, we then deduce that

D[2G(HAHT+R) - 2AHT] = 0

Hence,

G(HAHT+R) - AHT = 0 (C.8)

from which equation (C.4) immediately follows. Post-multiplying

equation (C.8) by GT and subtracting the result of equation (C.7)

yields equation (C.5). This completes the proof.
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APPENDIX D

Differential equation associated with timing bias and variations

in the drag coefficient.

Given the differential equation

where a dot denotes differentiation with respect to t, and v(t)

is a random variable with

Ev(t) = 0 (D.2)

Ev(ta)v(tb) = V 6(ta - tb), (D.3)

6(t) being the Dirac delta function satisfying

6(t) = 0 if t 0 0 and (D.4)
Go

f 6 (t) dt = 1, (D.5)

it will be shown that

x(t) = x0 + :ko (l-exp-t) + h(t) (D.6)

anx(t) = xo exp (- t) + h (t) (D.7),

where h(t) and hi(t) are random variables satisfying

Eh(t) -E(hi(t) -0, (D.8)

Eh (t)2 - IV(2t -(1-exp-t)(3-exp-t)] (D.9)

Ehi(t) 2̂ -kV~l -exp-2tJ (D.10)

Eh(t)h(t) - V[i exp-t1 (D.11)
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and

X0 - x(O), c0 =X'(O) (D.12)

Proof. Since

d [k(t)expt] =Ck + xIexpt, equation (D.1)

may be integrated to give

k(t)expt - ;C0  exps v(s)ds (D.13)

Hence

c~ =icoexp(-t) + iit,(D.14)

where

h~) exp(s-t)v(s)ds (D.15)

Since

d f tv(s) [1-exp(s-t)]ds f ftexp(Bt)v(s)ds,
Tt- 00

it follows from equation (D.15) that

h(t) = ftv(s) [l-exp(s-t)]ds (D.16)
0

Integration of equation (D.14) yields

x(t) =xo + x0 (l-exp-t) + h(t) (D. 17)
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Equations (D.6) and (D.7) have thus been derived. Equations (D.8)

easily follow from equations (D. 15), (D.16) and (D.2). Equations

(D.9) through (D.11) will now be derived. From equations (D.15),

(D.16) and (D.3) it follows that

E h(t) 2 
= V f[l-exp(s-t)] 2ds, (D.18)

0

t

Eh(t) 2 = V f[exp2(s-t)]ds, (D.19)
0

Eh(t)h(t) = V .texp(s-t)[l-exp(s-t)]ds. (D.20)

Integrating equation (D.18) we obtain

Eh(t) 2 = V[t - 2(l-exp-t) + (l-exp-2t)],

which after some simplification leads to equation (D.9). Equations

(D.19) and (D.10) are easily seen to be equivalent. From equation

(D.20) we deduce that

Eh(t)h(t) = V[(l-exp-t) - %(l-exp-2t)],

which can be seen to reduce to equation (D.11). This completes

the derivation of the required equations.

Expected values of x, x, X 2 and k2 for large values of t.

It follows from equations (D.6) through (D.11) that

for large values of t,
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Ex(t) = xo + X0 (D.21)

Ek(t) = 0 (D.22)

Ex(t) 2 = (X0 + xo) 2 + Vt= Vt (D.23)

Ek(t)2 = V (D.24)

Autocorrelation functions for x and x.

If ta ! t then we obtain similarly to equations (D.18)

and (D.19)

t
E h(t)h(ta) = V f1l-exp(s-t)] (l-exp(s-ta)]ds, (D.25)

0

and t

Eh(t)h(ta) = V fexp(s-t)exp(s-ta)ds. (D.26)
0

Hence,

E h(t)h(ta)/V = t-(l-exp-t]-[exp(t-ta)-exp-ta]

+ k[exp(t-ta)-exp(-t-ta)) , (D..27)

and

E h(t)h(ta)/V = k[exp(t-ta)-exp(-t-ta)) (D.28)

Writing ta = t + At, (D.29)

we deduce that for large t,
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E h(t)h(t + At) = Vt (D.30)

and
E h(t)h(t + At) = V exp(-At) 

(D. 31)

Thus for large t,

[Ex(t)x(t + At)]/[Ex(t)2]= 1 (D.32)

and

[Ex(t)i(t + At)]/[Ex(t)2] = exp(-At) (D.33)

A further quantity of interest is E[x(t) - x(t + At)] 2.

It follows from equations (D.6) and (D.8) that for large t,

x(t) - x(t + At) = h(t) - h(t + At).

Hence we obtain with the aid of equations (D.9), (D.27) and (D.29)

E[x(t)-x(t + At)]
2 = E.h(t) 2 + h(t + At) 2

- 2 E h(t)h(t + At)

- V[t-l.5] + V(t + At - 1.5]

- 2V[t- 1- 1 exp(-At)]

Thus, for large t,

E[x(t) -x(t + At)] = V[At - (l-exp-At)] (D.34)
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If furthermore At is small the above may be approximated

by

Ejx(t) - x(t + At)] 2 = kV (At)2  (D.35)

Change of variable formula for the Dirac delta function.

If in equation (D.5) we change the variable of integra-

tion from t to

s = ft (D.36)

where f is a positive constant, we obtain

f d(s/f) ds f (D.37)

Consequently,

6(s/f) = f6(s) (D.38)
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APPENDIX E

Selection of 4 GPS Satellites for Optional Position Determination

In section 6 of the main text it was shown that the

measurement d. to the j-th satellite is given by

d. = r ) ) + b, (E.1)

where r. is the position vector of the j-th GPS satellite, r is

the position vector of the user, and b is a measurement bias.

In this appendix we shall determine where the 4 GPS

satellites ideally should be located in order that the user's

position may be calculated with the least amount of error. To

do that we make the following assumptions

E 6i. = E 6d. = 0, (E.2)

where 6i. is the error in the position of the j-th GPS satellite

and 6d. is the measurement error. We further assume that the

errors are uncorrelated:

E 6i 6i = 0, E 6dj6dk = 0 for j k,

and

E6r6rT = i2 I, E(6d.)2 = (E.3)

where a and o are scalars, and I is the 3 x 3 identity matrix.
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If the error in the calculated user position is denoted

by 6i and the error in the calculated bias by 6b, then it follows

from equation (E.l) that if the errors are small then

T6d. = v. (6ri - 6i) + 6b, (E.4)

where the unit vector vj is defined by

V= (i - i)/j - (E.5)

Rearranging the terms in equation (E.4) we find that

vj 6i - 6b s., (E.6)

where sj = vjT6 j 6d. (E.7)

From equations (E.2) and (E.3) we deduce that

Esj = 0, (E.8)

Esisk = 0 if j 0 k (E.9)

and

Esj 2 = vjT 2 v. + a 0
2

Since vi is a unit vector the last equation reduces to

E sj2  02, (E.10)
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where

02 =2 + o02 (E.11)

Combining the measurement from four GFS satellites, equation

(E.6) may be rewritten as

A [6ir) = s, (E.12)

where

T
A- v) ,-1 and S IS (E.13)

T
V2  -s2

V3  , - s3

TV, ,-I s4

It is interesting to note from equations (E.12) and

(E.13) that the position error 6i is a function of the 'user to

GPS satellite' direction, but independent of the corresponding

distance.

From equations (E.8), (E.9), (E.10), and (E.13) we

deduce that

Es = 0 and EssT = I, (E.14)

where I is the 4 x 4 identity matrix.

Solving equation (E.12) we obtain

[6i] A-'S (E.15)

6bj
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7 7. "
....

We hence deduce with the aid of equation (E.14) that

E [6i' =0 (E.16)

L6bi
and

[E T r6b A-A -T (E.17)

6b 6r-T  6b2

It will now be shown that in order that the expected

square of the position error (trace E 6r6r T ) be a minimum, the

angles between the four vectors v,, v2, v3 and v4 should all be

equal.

Let

A = B] [b3b 2 b3 b 4 1(E.18)
[h T jh h2 h3 h4]

where B is a 3 x 4 matrix; h is a 4-vector; b1 , b 2 , b 3 and b4 are

3-vectors; hi, h 2 , h 3 and h4 are scalars.

Since AA-, = A-'A = I it follows from equation (E.13)

and (E.18) that

v. b = 6.. + h. (E.19)

where 6ij is the Kronecker delta,

4 TI b ivi 1 (E.20)
i= 1
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4
7. bi  0, (E.21)
i=l

4
. -I (E.22)

i=l

From Equations (E.17) and (E.18) we deduce that

trace E T= a2 trace BBT (E.23)

In order that the above quantity be a minimum it is

necessary that

a-- trace BBT + I (viTvi - i)X i = 0 (E.24)

the Lagrangian multipliers Xi having been introduced to take into

account the fact that each vi is a unit vector. The following

result is derived at the end of this appendix

a_ T T

trace BB -2 BB b. (E.25)

Using equation (E.25) we deduce from equation (E.24)

that

X -v BBT b. (E.26)

It follows from equations (E.21) and (E.26) that

4
l Av =0 (E.27)

J=1 -7
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Premultiplying equation (E.26) by biT we deduce with the aid

of equation (E.19) that

b.T B9T b x A b. v.

= Aj(6ij + hi) (E.28)

Since the left hand side of the above equation is symmetric in

i and j we conclude that

A h i = Ai hj (E.29)

Summing the above equation with respect to i we deduce with the

aid of equation (E.22) that

4
A = -hj 7. x i (E.30)

There does not appear to be any reason why A. should differ from

xk. We therefore make the assumption (later to be justified, of

course) that for all j,

A. A (E.31)

It hence follows from equation (E.30) that

h - -J (E.32)

Since by equation (E.18)

4
BB I T bbT (E.33)

j=l J
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we conclude from equations (.31), (E.20) and (E.26) that

XI = BBT BBT (E.34)

Since BBT is a semi-positive definitive matrix this is only

possible if

BBT = /A- I (E.35)

It hence follows from equation (E.26) that

bi = FA v .(E.36)

From the above and equation (E.32) and (E.19) we conclude that

rX Vi T v. = 6.. - (E.37)

Since vi is a unit vector it follows that (i = j in the above

equation)
v - = @ .(E.38)

Hence if i y j,

Tvij vfi- (E.39)

This is the desired result. We conclude from equations

(E.17), (E.18), (E.35), (E.38), (E.32) and (E.21) that

E [66 6T 6i6bl 1 o

6b6 T 6b2] 
(E.40)
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. . .... VR

A set of unit vectors satisfying equation (E.39) are

given by

vi=( 0 0 1 )

v T = (22/3 , 0 , -1/3 )
v3T = -(-/ 3 /2--/3 -1/3 (E41

vT = ,-/2/3 , - , -1/3

By equations (E.36) and (E.38)

b. f v. (E.42)

With hj given by equation (E.32), equations (E.19)

through (E.22) are readily verified.

From equations (E.33), (E.20) and (E.42) it follows that

BB T = I, (E.43)

which is consistent with equations (E.26), (E.42), (E.31) and

(E.38). The solution set (E.41) is thus justified. Note that the

angles between the vectors v. equal cos -'(-1/3) or 109.5 degrees,

and that the expected square of the position error as given by

equations (E.23) and (E.43)

E 6r = * 02 (E.44)
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E.1 The Selection of Two Satellites when two have already

been Selected.

Let us assume that we are given two vectors v, and v2.

There is no loss of generality in assuming that they are of the

form

v1
T = (cosp, sinp, o)

(E.45)

v2T= (cosp,-sinp, 
o)

For reasons of symmetry it follows that v 3 and v4 must be of the

form

v3 T= (cosq, 0 , sinq) (E. 46)
AT= (cosq, 0 , -sinq),

for some angle q to be determined. From the above and equation

(E.13) it follows that

A f  cosp, sinp, 0 , -l

cosp, -sinp, 0 , -i
(E. 47)

cosq, 0 , sinq , -1

cosq, 0 -sinq , -d
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Hence

ATA 2(cos 2 p+cos 2 q), 0 , 0 , -2(cosp+cosq)

0 , 2sin2 p, 0 0

(E. 48)
o o 2sin2 q, 0

-2(cosp+cosq) , 0 , 0 , 4

Inverting the above matrix we obtain

ATA-T
=1 0 0 cosp+cosq

(cosp-cosq) 2 2(cosp-cosq) 2

0 1 0 0
2sin 2p

(E.49)

o 0 10
2sin2 q

cosp+cosq 0 0 cos 2p+cos2

2(cosp-cosq) 2 (cosp-cosq) 2

Comparing the above with equation (E.18) we note that

trace BBT 1 I + I + 1 (E.50)
(cosp-cosq)2  2sin2p 2sin2q
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Since BBT is proportional to the expected square of the

position error, we choose q such as to minimize that trace. Letting

the partial derivative with respect to q vanish we deduce that

2sing + cosg = 0 (E.51)

(cosp-cosq) ' sin 3q

Let cosp = c and cosq = x (E.52)

Corresponding to equation (E.51) we then obtain

f(xc) 0 o, (E.53)

where

f(x,c) = 2(1-x2 )2 + x(c-x) 3  (E.54)

In finding the solutions of the above equations, we may assume that

c > 0, (E.55)

since this only involves the definition of the coordinate axes.

Obviously, c < 1. From equation (E.54) we find that

f(-o0,c) + 0

f (-, c) (c+l)

f(O,c) = 2

f(lc) = -(1-c)3

f(c,c) = +
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From the above it is evident that equation (E.53)

always has 4 real solutions, and of those there is always one

and only one in the interval (-1,0). Since cosp is positive it

is quite obvious from equation (E.50) that the desired solution

is negative. Although it is not simple to obtain an exact

solution, a good approximation is given by

x = g(c), (E.56)

where

g(c) f .327c - .765 (E.57)

the linear approximation being based on the exact solutions for

c = 1. [x = (/17-5)/2] and c =0 [ x = /-2]

Let A2 denote the expected square of the position error.

From equations (E.23), (E.50) and (E.52) we obtain,

A 2 / + 1 + 1 (E.58)
(c-x) 2  2(1-c)2  2(l-x2 )

A comparison of exact and approximate values of x as

functions of c are given in table E.I. Formula (E.58) has also been

evaluated in the table. Note that the optimum value for

c =.577 l/ r3 corresponds to solution (E.41).
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TABLE E.l Exact and Approximate Values of x, and the
Expected Sauare of the Position Error as a
Function ot c.

c x(exact) x = g(c) 012 O34 A 2 /o 2

.000 -.765 -.765 180.0 80.2 3.41

.174 -.710 -.708 160.0 89.9 2.80

.342 -.655 -.653 140.0 98.5 2.45

.500 -.603 -.602 120.0 106.0 2.27

.643 -.555 -.555 100.0 112.6 2.27

.766 -.515 -.515 80.0 118.0 2.50

.866 -.482 -.482 60.0 122.4 3.20

.940 -.458 -.458 40.0 125.5 5.44

.985 -.443 -.443 20.0 127.4 17.91

1.000 -.438 -.438 0.0 128.0

.577 -.577 -.576 109.5 109.5 2.25

012 is the angle between satellites l and 2
as seen from the user.

034 is the angle between satellites 3 and 4
as seen from the user.

A2 is the expected error of the square of

the position error

a2 is the sum of the measurement error variance
and the variance of the GPS position error
measured along any axis.
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E.2 Selection of the Fourth Satellite When Three Have

Already Been Selected.

In equation (E.13) let

Ao vand do i

tV3 J

Then ] (E.60)

Let

A-' [B0, b4

Then

AoBo - doh = I (E.62)

Aob4 + doh = 0 (E.63)

vN4 Bo - h0  = 0 (E.64)

vb. + h4 = 1 (E.65)

From equation (E.63) we obtain

b4 Aj'd oh,. (E.66)
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From the above and equation (E.65) we find that

h4 = (1 - v Ao d0 )
-  (E.67)

From equation (E.62) and (E.64) we obtain

v (A l + AldohO) - ho i 0.

Hence,

hFr = (l-v.T AF'do) - ' v r AZ- '

= h4v4 A;1  (E.68)

From the above and equation (E.62) we deduce that

B0 = Ail+ Ajldov3 Ajlh 4  (E.69)

Writing

e 0 = AldO and f = AiT V4 , (E.70)

equations (E.66), (E.67) and (E.69) may be rewritten in the form

b4 = - eoh4 (E.71)

h4 = (l-v0eoy" (E.72)

and Bo = AF1.+ eofT h4  (E.73)

Comparing equation (E. 18) and (E.61) we see that

B = [Bo, b4 ] (E.74)
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It hence follows from equations (E.71) and (E.73) that

TT

BBT - A 1A T + A 1 f e0Th + eof A T h

+ eofTf e T h2 + e 0 e T 144 (E.75)

Hence

trace BB trace AFIAjT + 2h~eTA 0f

+ h T e 0 ( + fTf) (E.76)

Since the expected square of the position error is proportional

Tto trace BB , it follows that we must choose the fourth satellite

such that

2h 4 e T A-'f + h2 eT0 e0 (I + fT f)

is a minimum. A0 as defined by equation (E.59) may be inverted

using the formula

A ' = (v 2 Av 3 , V 3 AV 1 , VIAV 2 )/[(ViAV 2 )-v 3 ] (E.77)

E.3 Derivation of Equation (E.25)

The desired formula is most easily derived using the

customary index summation convention. In what follows Latin indices

will assumethe values 1,2,3,4 and Greek indices the values 1,2,3.

Since B is a 3 x 4 matrix it follows that

(BBT)aO = B iBi (E. 78)

Hence

trace (BBT) -- BBai (E.79)
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From equation (E.18) we deduce that

(BA) =

Consequently

BkAks 6(s ,

and

- "- (k- ' ks) =0 (E.82)

Hence

BGk Aks + Baj 0 (E.83)

Post multiplying the above equation by As1i we 
deduce that

a A pa a V A- = 0 (E.84)

axA. ai aj Pii.e.

BBa i  B B B a i  (E. 86)

ai '5A at Vi ai

and trace BBT = -2 B .B iBi (E.87)

ii'aj pi i

In accordance with equations (E.13) and (E.18) 
this may also be

written as

I- llctrace BBT)1  - 2 (BBT) (b.) (E.88)
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Hence

trace BB T -2BB bill (E.25)
In

the desired result.
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APPENDIX F
Flow Charts and Short Descriptions Of Fotonap Subroutines
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77.2

Flow Chart F.2

S
p
0
L
c
D

A u A P p p
G L T 0 0 0
E D 0 0 01

A 0 L L 0

Y 0 12 0

T
I
m
A
R
R

N
T
E
R
p

-90-



T Flow Chart F.l

IK
N

0 D
L u
D m
m D
A u
N m

s D. P I P S R Ps KP R R N R 0 E m0 I E E T T L s N H NL D P E I V I A 0 Cc I A G A E D L U 0D T R L R p T N

-89-



Flow Chart F.2
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Flow Chart F.3
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Flow Chart F.4
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Flow Chart F.5
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Flow Chart F.6
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Flow Chart F.7
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Flow Chart F.8
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Flow Chart F. 9
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Flow Chart F.10
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Flow Chart F. 11
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ALPHABETIC LISTING AND SHORT DESCRIPTION OF

PHOTONAP SUBROUTINES

SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

ATMIN FINDOG Reads tabulated atmospheric densities
from file LUA

ATMOUT GENFIL Writes tabulated atmospheric densities
on file LUA

BETA ION Used in computation of ionospheric
corrections

CATOOO SPOLCD Converts "free form" card input to
standard NAP format (not on 1108)

DARITE SOLVER Utility routine for direct access
INVPRE file 43
REDSKM
INVERT
INVRTB
INVRTC

DAYHMS NUTION Converts (Julian day, seconds of day)
EDIT to (year, month, day, hour, min, sec)
INTPRT
IONOSF
RESID
SIMOUT
VISIBI
KMNOUT
KMNSIM
KMNSM2

DBREAD PREINT Utility routine for direct access
file 41

DBURN INTEG Adds velocity increment to satellite
velocity (Discrete thrust)

DEFALT DREDIT Initializes program constants to their
default values (See User's Guide)

DENS EXPAND Computes atmospheric density as
function of height (*)

DGRITE PTSTAR Utility routine for direct access
SOLVER file 40
PRTIAL
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

DKGK ION Used in computation of ionospheric
corrections

DKSICO ION Used in computation of ionospheric
corrections

DRAGU INTEG Called at the end of each drag
segment (except the last) to calcu-
late the appropriate partial deriva-
tives

DRAVAR ENGRAT Computes drag contribution to varia-
tional equations (*)

DREDIT OLDMAN Control routine for processing control
card input

DUMDUM PHOTO Dummy routine used for switching
program overlays

EDIT DREDIT Edits observed data or (in simulation
mode) generates random numbers

EIGN FINALP Computes eigen-values of a matrix

ENBVAR ENGRAT Computes central term and planetary
contribution to variational equations
(*)

ENGRAT INTEG Control routine for each integration
step (*)

ENROOT ENGRAT Finds the zero of a function expressed
OCCULT as a power series

EXPAND ENGRAT Develops power series coefficients for

satellite vector (*)

FINALP OLDMAN Prints final results

FINDOG INTEG Initializes integrator at start of
integration or on change of origin

FIREAD FINDOG Utility routine for direct access
INTGA file 41

FLREAD FINALP Utility routine for direct access

file 41
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

GENBUG GENFIL Debug print for subroutine GENFIL
(formerly part of GENFIL)

GENFIL DREDIT Generates internal files based on
control card input

GEOCEG MEASXX Routine for handling geoceiver
measurements

GEOS EDIT Reads data tape in GEOS format

GETTAP READE Reads planetary ephemerides from
file (10)

GK ION Used in computation of ionospheric
corrections

GPRSM2 EDIT Reads data tape in NAP format

GROUND PTSTAR Estimates ground point coordinates by
projecting photographic plate coordi-
nates onto Earth s surface

HOPRFT GEOCEG Tropospheric refraction corrections
for geoceiver data

IEMCOL GENBUG Subroutine for unpacking integers
and storing them (unpacked) in an
array

IEMSET DEFALT Function for packing integers
INP600
GENFIL

IEMVAL DEFALT Function of unpacking integers
INP600
GENFIL

INPBUG INPCRD Called by INPCRD for debug print

INPCRD DREDIT Processes control card input

INP100 INPCRD Used for processing series 100 input
cards (formerly part of routine
INPCRD)
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

INP200 INPCRD Used for processing series 200 input
cards (formerly part of routine INPCRD)

INP300 INPCRD Used for processing series 300 input
cards (formerly part of subroutine
INPCRD)

INP600 INPCRD Used for processing series 600 input
cards (formerly part of routine INPCRD)

INP700 INPCRD Used for processing series 700 input
cards (formerly part of routine INPCRD)

INTCOD INP200 Generates arrays for recovery of gravity
parameters (spherical harmonics or
mascons)

INTEG OLDMAN Control routine for integrator

INTERP TIMARR Interpolation routine used for setting
up tables of time corrections

INTGA INTEG Prints integrator output at end of
integration of each arc

INTPRT ENGRAT Prints time corresponding to integrator
INTGA output

INTPl PREPAR Estimates difference between integrator
ENGRAT time and UTC through interpolation
PRTIAL
PTSTAR

INTP2 NUTION Estimates difference between UTI and
integrator time through interpolation

INVERT SOLVER Part 1 of matrix inversion

INVPRE SOLVER Used in processing photogrammetric data.
(i) resequences file 26 (IPASOT) of
ground point images on file 38. (ii)
on first iteration writes ground point
records from file 25 (IARCOT) to file
23 (IGPT)

INVRTB SOLVER Part 1 of matrix inversion. Prints
intermediate results
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

INVRTC SOLVER Similar to INVRTB, but solution
obtained without completing matrix
inversion

INVSYM KMNCON IN SITU inversion routine for positive
definite matrix in upper diagonal form

INVSYS EDIT Similar to INVSYM. Additional feature
is to check for singularity

ION IONOSF Used in computation of ionospheric
corrections

IONOSF PRTIAL Used in computation of ionospheric
corrections

JACHIA DENS Computes atmospheric density (Lockheed-
Jacchia model)

JULDAY SPOLCD Converts (year, month, day, hours,
INP200 minutes, seconds) to (Julian day,
IONOSF seconds of day)

KEPLER PREINT Converts Keplerian to Cartesian input.

KICKER INTEG Initializes integrator common blocks

KMNCON OLDMAN Control routine for Kalman filtering
and smoothing

KMNEVA KMNCON Used in Kalman filtering for evaluating
integrated power series

KMNIDE KMNINI Store (9 x 9) identity matrix in required
KMNCON location

KMNINI KMNCON Initialization routine for Kalman filterin
and smoothing

KMNINV KMNCON Used in Kalman filtering for calculating
the transition matrix relative to the
previous time point (given the transition
matrices relative to epoch)

KMNMPI KMNCON Utility routine for computing C = A * B
T

where A is symmetric and stored in upper
triangular form



SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

KMNMP2 KMNCON Utility routine for computing C = A * B,
where C is symmetric. C is stored in
upper triangular form

KMNMP3 KMNCON Utility routine for computing
C = AT * B * A, and x = ATy. B and C
are symmetric and stored in upper
triangular form

KMNOUT KMNCON Used to output the parameter estimates
(and their covariances) from the Kalman
filter and smoother. (Output on file
29 (ITAPE))

KMNRAN KMNCON Random number generator associated
with simulations in Kalman filtering

KMNSIM KMNCON Simulates GPS output used in Kalman
filtering (Output on file 33 (LF33))

KMNSM2 KMNCON Printout routine for Kalman filtering.
In simulation mode prints full 9 para-
meter state-vector. In filter or
smoother mode prints only 3 parameter
state-vector (first 6 parameters
printed in KMNOUT)

MAGFIN ION Used in computation of ionospheric
corrections

MAIN Control routine for NAP program
(see photo)

MASCON EXPAND Computes mascon contributions to
satellite acceleration (**)

MATINV KMNINV Matrix inversion
KMNCON
DBURN
DRAGU

MATZEV ENGRAT Evaluates state transition matrix at
end of integration step (*)

MATZEX ENGRAT Develops coefficients for power series
expansion of state transition matrix

-105-



SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

MAT23 PLATEC Matrix multiplication (2x3)x(3x3)

MAT3T3 MEASUR Matrix multiplication (3x3) 'x(3x3)
MEASXX (' indicates transpose)
PLATEC
GROUND
PTSTAR
TERRA

MAT31 MEASUR Matrix multiplication (3x3)x(3xl)
SPO2A3
MEASXX
TDRSS
PTSTAR
PLATEC

MAT32 PTSTAR Matrix multiplication (3x3)x(3x2)

MAT33 NUTION Matrix multiplication (3x3)x(3x3)
PTSTAR
PLATEC
STARAN
ROTATE

MAT99 KMNCON C = A * B. A is a (9x9) matrix,
C and B are (9xn), where n = 9 (entry
MAT99) or n = 1 (entry MAT91)

MEASUR PRTIAL Routine for handling the following
measurement types: RANGE, AZIMUTH,
ELEVATION, RIGHT ASCENSION, DECLINATION,
MINITRACK DIRECTION COSINEIS, X30 and Y30
ANGLES, DISTANCE TO ELLIPSOID, RANGE
RATE, MINITRACK RATES, X85 and Y85
ANGLES, STATE VECTOR MEASUREMENTS

MEASXX PRTIAL Routine for handling the following
measurement types: RANGE SUM, RANGE
SUM RATE, GRARR, TDRSS, GEOCEIVER

NBDNEX ENGRAT Develops coefficients for power series
expansion of Sun, Moon, and Planets (*)

NBDPEX ENGRAT Computes central term and planetary
EXPAND contribution to satellite acceleration

(**)
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

NEWJPL INTEG Used in conjunction with READE and
GETTAP to obtain planetary ephemerides

NUTION GENFIL Calculates precession/nutation matrix
PREINT and Greenwich Hour Angle
ENGRAT
PRTIAL
PTSTAR
SOFRT
KMNCON

OCCULT ENGRAT If satellite is orbit around body A,
FINDOG this routine determines if satellite

is visible from body B

OFDATE SOFORT Rotates vector or matrix from "inertial
SPO2A3 1950.0" to "true of date" (Double
SOFSEC Precision)
XFORM
KMNEVA

OLDMAN PHOTO ("old main") secondary control routine
for NAP program

04DATE SOFRT Rotates vector or matrix from "inertial
1950.0" to "true of date" (single
precision)

PAGE SPOLCD Prints page heading
DREDIT
EDIT
INTCOD
PREPAR
RESID
FINALP
SIMOUT
VISIBI
KMNINI
SOLVER
SOLV2
INVRTB
INVRTC

PFSOLV SOFORT Evaluates partials of satellite vector
w.r.t. continuous thrust parameters
using previously computed power series
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

PFVARY ENGRAT Develops power series coefficients for
partials of satellite vector w.r.t.
continuous thrust parameters (*)

PLATEC PTSTAR Computes predicted photographic plate
coordinates and range (Photogranmetric
measurement types 7-9)

POTSOL SOFORT Evaluates partials of satellite vector
SOFSEC w.r.t. gravity parameters using pre-

viously computed power series

POTVAR ENGRAT Computes central body (excluding central
term--see ENBVAR) contribution to
variational equations (*)

PREINT PREPAR Sets up arrays for integrator based
on current values of "solve for"parameters

PREPAR OLDMAN Sets up arrays for integrator based
on control files

PRTBG1 PRTIAL Output debug print from subroutine
PRTIAL

PRTBG2 PRTIAL Output debug print from subroutine
PRTIAL

PRTBG3 PRTIAL Output debug print from subroutine
PRTIAL

PRTIAL OLDMAN Computes differences between observa-
tions and predicted observations. Also
computes associated partials. Results
output on file (ISFILE)

PTCMPA PRTIAL Data compression associated with sub-
routine PRTIAL (formerly part of PRTIAL)

PTINIT PRTIAL Used for initializing variables used in
subroutine PRTIAL (formerly part of
PRTIAL)

PTSTAR PRTIAL Routine for handling photogrammetric
measurements (formerly part of PARTIAL)
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

RAN601 INP600 Modifies a parameter value by adding
INTCOD a random Gaussian number with a given

standard deviation

READE NEWJPL Used in conjunction with GETTAP to
obtain planetary ephemerides

READER EDIT Utility routine for read/write from/to
RECPOT sequential file
PRTIAL
SOFORT
SOFSEC
PTSTAR

READU ION Used in computation of ionospheric
corrections

RECCOF ENGRAT Develops power series coefficients for
partials of satellite w.r.t. a single
parameter (Used for solar pressure and
drag) (*)

RECPOT ENGRAT Develops power series coefficients for
partials of satellite vector w.r.t.
gravity parameters (*)

REDISK PRTIAL Utility routine for read/write of
PTINIT totally stable parameters on random
PTSTAR access file

REDSKK SOLVER Utility routine for read/write of totally
SOLVI stable parameters on random access file
INVERT
INVRTB
INVRTC

REDSKM SOLVER Utility routine for read/write of normal
SOLVFU equation coefficient matrix on random
SOLV1 access file
SOLV2
INVRTB

REFRCT PRTIAL Computes tropospheric refraction corrections
TDRSS

REPRT2 DREDIT Generates printed report of run conditions
as specified by the control cards
(temporarily removed from NAP)
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

REREAD RESID Utility routine for direct access
file 41

RESID OLDMAN Prints measurement residuals
FINALP

ROTATE PTSTAR Computes a rotation matrix corresponding
STARAN to sequential rotations about principal
TERRA axes

ROTINT PRTIAL Converts (latitude, longitude, height)
to Cartesian coordinates. Computes
rotation matrix "Earth fixed Geocentric
to Local"

ROTPAR MEASUR Rotates measurement partials w.r.t.
MEASXX satellite state-vector from "Earth fixed"

to "True of date"

ROTVFD MEASUR Rotates a vector (v) from "true of date"
MEASXX (D) to "Earth fixed" (F)
SOFSEC

ROTI PTSTAR Computes a rotation matrix corresponding
ROTATE to a rotation about a principal axis

RSUM MEASXX Computes predicted range sum and range
sum rate measurements (Measurement
types 16-17)

SELECT KMNCON Associated with CPS measurements. Computes
GPS satellite position, user distance
to them and partial derivatives w.r.t.
user position. In simulation mode,
selects an optimal set of 4 GPS satellites.

SICOJT ION Used in computation of ionospheric
MAGFIN corrections

SIGWT FINALP Converts weights to standard deviations
and vice versa

SIMOUT OLDMAN Computes simulated measurements. Outputs
results on file

SKRIV PRTIAL Utility routine for writing data on
PTSTAR sequential file
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

SOFORT PRTIAL Reads power series for primary satellite
MEASUR state vector and partials from sequential
GEOCEG file and evaluates at required time
PTSTAR point

SOFRT FINALP Reads power series for primary satellite
state-vector and partials from sequential
file and evaluates partials w.r.t.
the initial state-vector. Computes
state-vector covariance matrix

SOFSEC MEASXX Reads power series for secondary satellite
GEOCEG state-vector and partials from sequential

file and evaluates at required time point

SOLAWA SOLVFU Function for computing ATWA, ATWy, yTWy.
A is a (6xn) matrix, y is a 6-vector.
W is a (6x6) symmetric matrix stored in
upper triangular form. (called from
subroutine SOLVER when processing data
from Kalman filter output)

SOLREC SOFORT Evaluates power series to obtain
SOFSEC partials of satellite state-vector

w.r.t. a parameter (solar pressure and.
drag)

SOLVER OLDMAN Control routine for generating and
solving normal equations

SOLVFU SOLVER Used for computing the contribution of
6 correlated measurements to the Normal
Equations Matrix and Vector

SOLVI SOLVER Used for computing contribution of a
priori parameter values to Normal
Equations Matrix and Vector (Subroutine
SOLVI was formerly part of subroutine
SOLVER)

SOLV2 SOLVER Prints correlation vector for each arc
and stores primary arc covariance matrix
(entry SOLV2). Stores parameter numbers
and stability types for primary and
secondary arcs (entry SOLV2A) Initializes
normal equations matrix and vector for
multiple drag segments (entry SOLV2B).
(Subroutine SOLV2 was formerly part of
subroutine SOLVER)
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

SOLV3 SOLVER Used for deciding when to terminate
iterative solution process (entry
SOLV3). Prints summary associated
with inversion of Normal Equations
Matrix (entry SOLV3A) (Subroutine
SOLV3 was formerly part of subroutine
SOLVER)

SOREAD SOLVER Utility routine for reading a sequential
file

SORITE SOLVER Utility routine for writing a sequential
file

SPOLCD OLDMAN Scans NAP control cards for consistency.
Generates some arrays and files based
on the control cards. The control cards
are reformatted and output on file
(ICARD) for final processing by INPCRD

SPOOLl SPOLCD Used for computing interpolation tables
for E.T., UTC and UTI differences (via
call to subroutine TIMARR), and computing
and sorting time intervals for which
integrator output is required. Tables.
and time intervals are temporarily stored
in file 32 (LUB). (formerly part of
subroutine SPOLCD)

SPOOL2 SPOLCD Used only for photogrammetric data.
Generates ground point labels for output
on file 25 (IARCOT), and ground point
coordinates output on direct access file
30, (130). (entry SPOOL2) clears array
for ground point coordinates (entry
SPOOL3). (formerly part of subroutine
SPOLCD)

SPOI00 SPOLCD Used for preliminary processing of 100
series cards (entry SP0100). Used for
processing meteorological data used in
refraction formulae (entry SP0610) and
outputs processed data as well as TDRSS
data on file 26 (IPASOT) (entry SPOOL4).
(formerly part of SPOLCD)

SPO2A3 MEASUR Evaluate integrated power series output
for 2nd and 3rd time derivatives of
position
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

SPOVEL SOFORT Evaluates power series to obtain
SOFSEC satellite state-vector

STARAN PTSTAR Computes predicted stellar camera
orientation angles (photogrammetric
measurement types 1-6)

STARPA PTSTAR Computes a (3x3) matrix
STARAN (See note 1)

STARPI STARAN Computes a (3x3) matrix
(See note 1)

STASER TDRSS Develops power series coefficients for
station vector in inertial space at a
specified time T. The intertial coordinate
system is chosen to be instantaneously
coincident with the "Earth Fixed"
coordinate system at time T

STATEV ENGRAT Obtains state-vector (satellite or
planetary) by evaluating previously
developed power series (*)

SVAREQ SOFORT Evaluates power series to obtain
SOFSEC satellite state transition matrix
SOFRT

TDELAY TDRSS Computes the transmission time for a
radio signal sent from one moving point
to another

TDRSS MEASXX Computes predicted TDRSS measurements
(Measurement types 19-20)

TERRA PTSTAR Computes terrain camera orientation
angles from stellar camera orientation
angles

TERRAS PTSTAR Computes terrain camera orientation
angles such that the camera axes point
due East due North and vertically up

TIMARR SPOOLl Rearranges input UTI and Ephemeris

time corrections

UNIFD2 EDIT Reads data tape in "unified" Format
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SUBROUTINE
CALLED

Name BY PURPOSE OR FUNCTION

VISIBI SIMOUT Computes and prints time of satellite
visibility for each station

VXPROD SELECT Used for computing the vector cross
product C = A * B.

WRITER PTCMPA Utility routine for writing on sequential
file (37)

WTSPAX INP600 Utility routine for direct access
INTCOD file 41
INPCRD

XFORM TDRSS Uses "Inertial 1950.0" power series for
GEOCEG satellite state-vector to compute

satellite state-vector power series
coefficients in same coordinate system
as used by STASER
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NOTES

1. The computed matrices are of the form of matrices (3.19.13)

through (3.9.16) in "A Photogrammetric and Tracking Network

Analysis Program, Old Dominion Systems, Inc., October 1973,

Contract DAAK 02-72-C-0434".

2. Routines marked "*" are used in the integrator. They are

called once per integration step. Routines marked "**" are

used in the integrator. They are called once for each term

(beyond the second) in the power series expansion. For a 16

term power series expansion, which is normal, these routines

are thus called 14 times per integration step.
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APPENDIX G

Photonap Common Blocks

G.1 Listing of common blocks used by each subroutine

Routine Common Blocks

ATMIN IATMOS

ATMOUT ATMOS

CATOOO

DARITE TSPARM, SOLFIL

DAYHMS

DBREAD TSPARM

DBURN INTCMF, INTCMO, CDEBUG, BURNS

DEFALT COMSOL, ASPARN, PSPARM, GENCOM, CONMET, ICONST,
EXTCM, EARTH, BURNS, DRSGA, SOLDRG

DENS IATMOS

DGRITE FOTGNO

DGRITS FOTGNO

DRAGU INTCMO, DRSGB

DRAVAR INTCMG, INTCMO, INTCMI

DREDIT COMSOL, ACINFO, I0141MB, GENCOM, CPCOM, CDEBUG,
ICONST, CWORK, TSPARM

DUJMDUM

EDIT FOTGND, COMSOL, STINFO, GENCOM, EXTCM, COVAR,
CDEBUG, CWORK, IONUMB, ICONST

EDITDT CONSOL, TSEDIT, ASPARM, ACINFO, PSPARM, GPCOM,
ATMOS, DRSGA

EIGN

ENBVAR INTCMF, INTCMO, INTCMI, GENCOM

ENGRAT TIMING, INTCMF, INTCMO, II4TCMI, POWER, POTREC,

CDEBUG, EXTCM, GENCOM, I0141MB, AJPL, SEROUT

-16-



Routine Common Blocks

EN ROOT

EXPAND INTCMF, INTCMO, INTCMI, AJPL, POWER

FIt4ALP GEtNCOM, TYLE, TSPARM, ASPARF, PSPRMF, CWORK,
IONUMB, STINFO, FOTGND, EARTH, COVAR

FINDOG MISCOM, INTCMF, INTCMO, INTCMI, POTREC, TSPARM,
CDEBUG, GENCOM

FIREAD TSPARM

FLREAD TSPARM

PHOTO INROOT

GENFIL COMSOL, TSPARN, TSEDIT, ASPARM, ACINFO, PSPARM,
STINFO, GENCOM, CDEBUG, CWORK, IONUMB, ICONST,
GPCOM, TIMING, INROOT, AJPL, EXTCM, POTREC,
EARTH, BURNS, COVAR, SOLDRG, DRSGA

GENBUG COMSOL, ASPARM, PSPARM, CWORK, ICONST, GPCOM,
EXTCM, BURNS, SOLDRG

GEOCEG CMEASR, PARSOM, EXTCM, RSUMR, EARTH, PRTLB, PRTEMP

GEOS STINFO, IONUMB

GETTAP CETBL2, INTCMO, CETBL9, REC3

GPRSM2 IONUMB, STINFO

GROUND FOTO, EARTH

HOPRFT PRTLB, CMEASR, RSUMR, XPNDR

IEMCOL COMSOL

IEMSET COMSOL

IEMVAL COMSOL

INPCRD TSPARM, ASPARM, CDEBUG, IONUMB, ICONST, EXTCM.
BURNS, INPCMA

INPIOO COMSOL, GENCOM, IONUMB. ICONST, GPCOM, EXTCM.
EARTH, ATMOS, INPCMA

INP200 COVAR, ACINFO, COMSOL, ICONST, POTREC, EXTCM,
BURNS, INPCMA, DRSGA



Routine Common Blocks

INP300 STINFO, FCONST, INPCMA

INP600 TSPARM, TSEDIT, ASPARM, ACINFO, PSPARM, COMSOL,
CWORK, POTREC, GPCOM, INROOT, BURNS, INPCMA, DRSGA

INP700 COMSOL, GENCOM, FCONST, INROOT, INPCMA

INPBUG TSPARM, TSEDIT, ASPARM, ACINFO, PSPARM, STINFO,
TYLE, COMSOL, ICONST

INTCOD INROOT, TSPARM, TSEDIT, CWORK, GENCOM, GPCOM, POTREC

INTEG BURNS, DRSGB, CWORK, INTCMF, INTCMO, INTCMI, EXTCM,
CINTEG

INTER? TIMING

INTGA POTREC, TIMING, TSPARM, EXTCM, INTCMF, INTCMO,
INTCMI, POWER

INTPl TIMING

INTP2 TIMING

INTPRT

INVERT SOLCOM, TSSOLV, SOLFIL

INVPRE SOLFIL, FOTGND, SOLCOM, IONUMB, CWORK, TSSOLV,
TSPARM

INVRTB SOLCOM, TSSOLV, SOLFIL, GENCOM, CWORK, STINFO

INVRTC SOLCOM, TSSOLV, SOLFIL, GENCOM, CWORK, STINFO

IN VS YM

INVSYS

JACHIA TSPARM

JULDAY

KEPLER

KICKER SEROUT, CDEBUG, CINTEG, CWORK, CONMET, GENCOM,
EXTCM, IONUMB, PARTY, POTREC, POWER, INTCMF,
INTCMO, INTCMI, CETBL1

KMNCON EARTH, AJPL, CPSYST, KMANl, KMAN2, KMAN3, KMAN4,
KMANI, CINTEG, EXTCM, CWORK



Routine Common Blocks

DINEVA KMANl, KMAN2, EXTCM

KMN IDE

KIININI GENCOM. CWORK, GPSYST, KMANi, KMAN2, KMANI,
KMAN4, STINFO, IONUM

KMINV KM" 1

KMMP 1

KMNMP2

KMNNP 3

KMNOUT GPSYST, KMAN2, KMAN4, KNANI, GENCOM

KMN RAN

KNNSIM GPSYST, KMANI, KMAN4, GENCOM

KMNSM2 KMAN2, KNANI, GENCOM

MASCON INTCMF, INTCMO, INTCMI, CWQRK, POTREC

MATINV

MATZEV INTCMO, INTCMI

MATZEX INTCMF, INTCMO, INTCMI

MAT23

MAT3 1

MAT32

MAT3 3

MATMT

MAT99

MEASUR EXTCM, CMEASR, CONMET, EARTH, RSUMR, GENCOM,
CINTEG, PRTEMP, PRTLB, AJPL

MEASXX CMEASR, EARTH, RSUMR, XPNDR, GENCOM, CINTEG,
PRTEMP. PRTLB, AJPL

NBDNEX INTCMF, INTCMO, INTCMI
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Routine Common Blocks

NBDPEX INTCMF, INTCMO, INTCMI

NEWJPL INTCMF, INTCMO, INTCMI, CETBL1, CETBL2, CETBL4

NUTION TIMING

04DATE AJPL

OCCULT INTCMF, INTCMO, INTCMI

OFDATE AJPL

OLDMAN GENCOM, IONUMB, OVRLAY

PAGE GENCOM

PFSOLV EXTCM, POWER

PFVARY INTCMF, INTCMO, INTCMI, POWER

PLATEC FOTO

POTSOL

POTVAR INTCMF, INTCMO, INTCMI, AJPL

PREINT CWORX, CINTEG, TSPARN, EARTH, IONUMB, EXTCM, AJPL,.
DRSGB

PREPAR GENCOM, EARTH, TIMING, CDEBUG, CWORK, CINTEG, BURNS,
DRSGB, PARTY, POWER, EXTCM, IONU1MB, OVRLAY, COVAR

PRTBG1 CWORK

PRTBG2 CWORK, GENCOM, STINFO, IONR

PRTBG3 CINTEG, RSUMR, PRTLB

PRTIAL CDEBUG, CMEASR, CONMET, CWORK, CINTEG, BURNS,
DRSGB. PARTY, SDP, AJPL, POTREC, POWER, GENCOM,
EXTCM, IONUMB, STINFO, TSPARM, EARTH, RSUMR,
XPNDR, IONR, OVRLAY, TIMING, FOTGND, PRTLB, PRTEMP

PTCMPA PRTEMP, STINFO, CWORK, GENCOM

PTINIT STINFO, PRTEMP, CWORK, CINTEG, GENCOM, EXTCM,
TSPAR4, EARTH, IONR, RSUMR

PTSTAR PRTEMP, PRTLB, CWORK, CINTEG, AJPL, EXTCM, IONUMB,
EARTH, TIMING, FOTO, FOTGND
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Routine Common Blocks

RAN6 01

READE CETBL2, CETBL5, CETBL1, INTCMO, CETBL4, CETBL9

READER

RECCOF INTCMF, INTCMO, INTCMI

RECPOT INTCMF, INTCMO, INTCMI, CWORK, POTREC, CENCOM,
AJPL

REDISK TSPARM

REDSKK TSPARM, TSSOLV

REDSKM TSSOLV, SOLCOM, SOLFIL

REFRCT EARTH, GENCOM, CMEASR, CONNET

REPRT2

REREAD TSPARM

RESIl) TSPARM, CWORK, STINFO, GENCOM, CDEBUG, IONUMB

ROOTDT TIMING, STINFO, TYLE, GENCOM, CDEBUG, MISCOM,
CWORK, IONUMB, EXTCM, EARTH, ICONST, POTREC,
FCONST, CONMET, COVAR, FOTGND, TSPARM, IONR

ROTATE

ROTINT OVELAY, STINFO, EARTH

ROTPAR EARTH, PRTLB

ROTVFD EARTH, PRTLB

ROT 1

RSUM RSUMR, CMEASR, PRTLB

SELECT GPSYST, KMANI, KMALN2

S IGWT

SIMOUT INROOT, CWORK, STINFO, GENCOM, IONUMB

SKRIV

SOFORT GENCOM, CDEBUG, PRTLB, CINTEG, EXTCM, SDP, POTREC,
BURNS, IONUMB, PARCOM, POWER, AJPL, MISCOM
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Routine Common Blocks

SOFRT GENCOM, CDEBUG, CINTEC, EXTCM, IONUMB, FINCOM,
AJPL, COVAR, MISCOM

SOFSEC GENCOM, CDEBUG, PRTLB, CINTEG, EXTCM, SDP, POTREC,
IONUMB, PARCOM, PARTY, AJPL, MIESCOM

SOLAWA CWORK

SOLREC

SOLVDT SOLCOM, TSSOLV, SOLFIL

SOLVER SOLCOM, FOTGND, TSPARM, TSSOLV, IONUMB, GENCOM,
CWORK, CDEBUG, SOLFIL

SOLVFU SOLCOM, TSSOLV, IONUMB, GENCOM, CWORK

SOLV1 SOLCOM, TSPARM, TSSOLV, GENCOM, SOLFIL

SOLV2 SOLCOM, TSPARM, TSSOLV, GENCOM, CWORK, COVAR,
SOLFIL

SOLV3 GENCOM, SOLFIL

SOREAD CWORK, SOLFIL

SORITE CWORK, SOLFIL

SPODT SHiCOM, SP2COM, SP3COM

SPOLCD CONMET, TIMING, INROOT, FOTGND, TSPARM, STINFO,
GENCOM, IONUMB, ICONST, CWORK, EARTH, IONR,
SPiCOM, SP2COM, SP3COM

SPOOLl TIMING, IONUMB, SP1COM

SPOOL2 FOTGND, GENCOM, IONUMB, SP2COM

SPOVEL

SPO100 CONMET, POTREC, INROOT, TSPARM, STINFO, TYLE,
GENCOM, IONUMB, CDEBUG, CWORK, SP3COM

SP02A3 PRTLB, PARCOM, RSUMR, EXTCM, CMEASR, EARTH, PRTEMP

STARAN FOTO

STARPA

STARPI
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Routine Common Blocks

STASER EARTH

STATEV INTCMO, INTCMI

SVAREQ

TDELAY RSUMR

TDRSS CMEASR, PRTLB, PARCOM, EXTCM, RSUMR, XPNDR. EARTH,I

TERRA FOTO

TERRAS FOTO, PRTLB

TIMARR TIMING

UNIFD2 STINFO, IONUMB

VISIBI GENCOM, IONUMB, STINFO

VXPROD

WRITER

WT.SPAX TSPARM, TSEDIT, IONUMB

XFORI4 EXTCM

IONOSF CMEASR, PRTLB, STINFO, IONR, IONTM

ION CMEASR, IONR

BETA

READU IONR

DKSICO

DKGK

GK(

MAGFIN

SICOJT
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G.2 Listing of subroutines utilizing each common block

Common
Block Routines Used in

ACINFO DREDIT, EDITDT, GENFIL, INP200, INP600, INPBUG

AJPL ENGRAT, EXPAND, GENFIL, MEASUR, NEASXX, 04DATE
OFDATE, POTVAR, PREINT, PRTIAL, PTSTAR, RECPOT,
SOFORT, SOFRT, SOFSEC, KMNCON

ASPARF FINALP

ASPARM DEFALT, EDITDT, GENFIL, GENBUG, INPCRD, INP600,
INPBUG

ATMOS ATMOUT, EDITDT, INP1OG

BURNS DBURN, DEFALT, GENFIL, GENBUG, INPCRD, INP200,
INP600, INTEG, PREPAR, PRTIAL, SOFORT

CDEBUG DBURN, DREDIT, EDIT, ENGRAT, FINDOG, GENFIL,
INPCRD, KICKER, PREPAR, PRTIAL, RESID, ROOTDT,
SOFORT, SOFRT, SGFSEC, SOLVER, SP0100

CETBL1 KICKER, NEWJPL, READE

CETBL2 GETTAP, NEWJPL, READE

CETBL4 NEWJPL, READE

CETBL5 READE

CETBL9 GETTAP, READE

CINTEG INTEG, KICKER, MEASUR, MEASXX, PREINT, PREPAR,
PRTBG3, PRTIAL, PTINIT, PTSTAR, SOFORT, SOFRT,
SOFSEC, KMNCON

CMEASR GEOCEG, HOPRFT, MEASUR, MEASXX, PRTIAL, REFRCT,
RSUM, SP02A, TDRSS, IONOSF, ION

COMSOL DEFALT, DREDIT, EDIT, EDITDT, GENFIL, GENBUG,
IEMCOL, IEMSET, IEMVAL, INPlOO, INP200, INP600,
INP700, INPBUG

CONMET DEFALT, KICKER, MEASUR, PARTIAL, REFRCT, ROOTDT,
SPOLCD, SPO100

COVAR EDIT, FINALP, GENFIL, INP200, PREPAR, ROOTDT,
SOFRT, SOLV2
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Common
Bl.ock Routines Used in

CMORK SOLVFU, SPOiQO, DREDIT, EDIT, FINALP, GENFIL,
GENBUG, INP600, INTCOD, INTEG, INVPRE, INVRTB,
INVRTC, KICKER, MASCON, PREINT, PREPAR, PRTBG1,
PRTBG2, PRTIAL, PTCMPA, PTINIT, PTSTAR, RECPOT,
RESID, ROOTDT, SIMOUT, SOLVER, SOREAD, SOLFIL,
SPOLCD, KMNCON, KMNINI, SOLAWA, SOLV2

DRSGA DEFALT, EDITDT, INP200, INP600, GENFIL

DRSGB INTEG, PREINT, PREPAR, PRTIAL, DRAGU

EARTH DEFALT, FINALP, GENFIL, GEOCEG, GROUND, INPiQO,
MEASUR, MEASXX, PREINT, PREFAR, PRTIAL, PTINIT,
PTSTAR, REFRCT, ROOTDT, ROTINT, ROTPAR, ROTVFD,
SPOLCD, SP02A3, STASER, TDRSS, KMNCON

EXTCM DEFALT, EDIT, ENGRAT, GENFIL, GENBUG, GEOCEG,
INPCRD, INP100, INP200, INTEG, INTGA, KICKER,
MEASUR, PFSOLV, PREINT, PREPAR, PRTIAL, PTINIT,
PTSTAR, ROOTDT, SOFORT, SOFRT, SOFSEC, SP02A,
TDRSS, XFORM, KMNCON, KMNEVA

FCONST INP300, INP700, ROOTDT

FINCOM SOFRT

FOTGND DGRITE, DGRITS, EDIT, FINALP, INVPRE, PRTIAL,
PTSTAR. ROOTDT, SOLVER, SPOLCD, SPOOL2

FOTO GROUND, PLATEC, PTSTAR, STARAN, TERRA, TERRAS

GENCOM SOLV3, SOLVFU, SPOOL2, SPO100, VISIBI, KMINI,
KMNOUT, KMNSIM, KMNSM2, SOLVI, SOLV2, DEFALT,
DREDIT, EDIT, ENBVAR, ENGRAT, FINALP, FINDOG,
GENFIL, INP100, INP700, INTCOD, INVRTB, INVRTC,
KICKER, MEASUR, MEASXX, OLDMAN, PAGE, PREPAR,
PRTBG2, PRTIAL, PTCMPA, PTINIT, RECPOT, REFRCT,
RESID, ROOTDT, SIMOUT, SOFORT, SOFRT, SOFSEC,
SOLVER, SPOLCD, TDRSS

GPCOM DREDIT, EDITDT, GENFIL, GENBUG, INP100, INP600,
INTCOD

GPSYST KMNCON, KMNINI, KMNOUT, KMNSIM, SELECT

IATMOS ATMIN, DENS

ICONST DEFALT, DREDIT, EDIT, GENFIL, GENBUG, INPCRD,
INP100, INP200, INPBUG, ROOTDT, SPOLCD
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Common

Block Routines Used in

INPCMA INPCRD, INP100, INP200, INP300, INP600, INP700

INROOT PHOTO, CENFIL, INP600, INP700, INTCOD, SIMOUT,
SPOLCD, SPOlOO

INTCMF DBURIN, DRAVAR, ENBVAR, ENGRAT, EXPAND, FINDOG,
INTEG, INTGA, KICKER, MASCON, MATZEX, NBDNEX,
NBDPEX, NEWJPL, OCCULT, PFVARY, POTVAR, RECCOF,
RE CPOT

INTCMI DRAVAR, ENBVAR, ENGRAT, EXPAND, FINDOG, INTEG,
INTGA, KICKER, MASCON, MATZEV, MATZEX, NBDNEX,
NBDPEX, NEWJPL, OCCULT, PFARY, POTVAR, RECCOF,
RECPOT, STATEV

INTCMO DBURN, DRAVAR, ENBVAR, ENGRAT, EXPAND, FINDOG,
GETTAP, INTEG, INTGA, KICKER, MASCON, MATZEV,
MATZEX, NBDNEX, NBDPEX, NEWJPL, OCCULT, PFVARY,
POTVAR, READE, RECCOF, RECPOT, STATEV, DRAGU

IONR PRTBG2, PRTIAL, PTINIT, ROOTDT, SPOLCD, IONOSF,
ION, READU

IONTM IONOSF

IONUMB KMNINI, SOLVFU, SPOOLl, SPOOL2, SPOiQO, DREDIT,
EDIT, ENGRAT, FINALP, GENFIL, GEOS, GPRSM2,
INPCRD, INPiQO, INVPRE, KICKER, OLDMAN, PREINT,
PREPAR, PRTIAL, PTSTAR, RESID, ROOTDT, SIMOUT,
SOFORT, SOFRT, SOFSEC, SOLVER, SPOLCD, IJNIFD2,
VISIBI, WTSPAXI

KMANI KMNCON, KMNINI, KMNOUT, KMNSIM, KMNSM2, SELECT

KMAN1 KMNCON, KMNEVA, KMNINI, KMNINV

KMAN2 KMNCON, KMNEVA, KMNINI, KMNOUT, KMNSM2, SELECT

KMAN3 KMNCON

KMAN4 KMNCON, KMNINI, KMNOUT, KMNSIM

MISCOM FINDOG, ROOTDT, SOFORT, SOFRT, SOFSEC

OVRIJAY OLDMAN, PREPAR, PRTIAL, ROTINT

PARCOM GEOCEG, SOFORT, SOFSEC, SP02A, TDRSS

PARTY KICKER, PREPAR, PRTIAL, SOFSEC
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POTREC ENGRAT, FINDOG, GENFIL, INP200, INP600. INTCOD,
INTGA, KICKER, MASCON, PRTIAL, RECPOT, ROOTDT,
SOFORT, SOFSEC, SP0100

POWER ENGRAT, EXPAND, INTGA, KICKER, PFSOLV. PFVARY,
PREPAR, PRTIAL, SOFORT

PRTEMP GEOCEG, MEASUR, MEASXX, PRTIAL, PTCMPA, PTINIT,
FTSTAR, SP02A3

PRTLB GEOCEG, HOPRFT, MEASUR, MEASXX, PRTBG3. PRTIAL,
PTSTAR, ROTPAR, ROTVFD. RSUM, SOFORT, SOFSEC,
SPO2A3, TDRSS, TERRAS, IONOSF

PSPARM DEFALT, EDITDT, GENFIL, GENBUG, INP600, INPBUG

PSPRMF FINALP

REC3 GETTAP

RSUMR GEOCEG, HOPRFT, MEASUR, MEASXX, PRTBG3, PRTIAL.
RSUM, SPO2A3, TDELAY, TDRSS, PTINITI

SDP PRTIAL, SOFORT, SOFSEC

SEROUT ENGRAT, KICKER

SOLCOM INVERT, INVPRE, INVRTB, INVRTC, REDSKM, SOLVDT,
SOLVER, SOLVI, SOLV2, SOLVFU

SOLDRG DEFALT, GENFIL, GENBUG

SOLFIL DARITE, INVERT, INVPRE, INVRTB, INVRTC. REDSKM,
SOLVDT, SOLVER, SOREAD, SORITE, SOLVi, SOLV2,
SOLV3

SPiCOM SPOLCD, SPODT, SPOOLl

SP2COM SPOLCD, SPODT, SPOOL2

SP3COM SPOLCD, SPODT, SP0100

STINFO EDIT, FINALP, GENFIL, GEOS, GPRSM2, INP300, INPBUG,
INVRTB, INVRTC, PRTBG2, PRTIAL, PTCMPA, PTINIT,
RESID, ROOTDT, ROTINT, SIMOUT, SPOLCD, UNIFD2,
VISIBI, IONOSF, KMNINI, SP0100

TIMING ENGRAT, GENFIL, INTERr, INTGA, INTPl, INTP2,
NUTION, PREPAR, PRTIAL, PTSTAR, ROOTDT, SPOLCD,
TIMARR, SPOOLl
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TSEDIT EDITDT, GENFIL, INP600, INPBUG, INTCOD. WTSPAX

TSPARM DARITE, DBREAD, DREDIT, FINALP, FINDOG, FIREAD,
FLREAD, GENFIL, INPCRD, INP600. INPBUG, INTCOD,
INTGA, INVPRE. PREINT, PRTIAL, PTINIT, REDISK,
REDSKK, REREAD, RESID, ROOTDT, SOLVER, SPOLCD,
WTSPAX, JACHIA, SOLVI, SOLV2, SPOlOO

TSSOLV INVERT, INVPRE, INVRTB, INVRTC, REDSKK, REDSKM.
SOLVDT, SOLVER, SOLVL, SOLV2, SOLVFU

TYLE FINALP, INPBUG, ROOTDT, SP0100

XPNDR HOPRFT, MEASXX, PRTIAL, TDRSS
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